%D \module
%D   [       file=mp-grap.mpiv,
%D        version=2012.10.16, % 2008.09.08 and earlier,
%D          title=\CONTEXT\ \METAPOST\ graphics,
%D       subtitle=graph packagesupport,
%D         author=Hans Hagen \& Alan Braslau,
%D           date=\currentdate,
%D      copyright={PRAGMA ADE \& \CONTEXT\ Development Team}]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See licen-en.pdf for
%C details.

if known context_grap : endinput ; fi ;

boolean context_grap ; context_grap := true ;

% Below is a modified graph.mp

message ("using number system " & numbersystem & " with precision " & decimal numberprecision) ;

if numbersystem <> "double" :
    errmessage "The graph macros require the double precision number system." ;
    endinput ;
fi

if known contextlmtxmode :
    def _op_ = base_draw_options enddef ;
fi ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% $Id : graph.mp,v 1.2 2004/09/19 21 :47 :10 karl Exp $
% Public domain.

% Macros for drawing graphs

% begingraph(width,height)       begin a new graph
% setcoords(xtype,ytype)         sets up a new coordinate system (logarithmic,-linear..)
% setrange(lo,hi)                set coord ranges (numeric and string args OK)
% gdraw <file or path> [with...] draw a line in current coord system
% gfill <file or path> [with...] fill a region using current coord system
% gdrawarrow .., gdrawdblarrow.. like gdraw, but with 1 or 2 arrowheads
% augment<path name>(loc)        append given coordinates to a polygonal path
% glabel<suffix>(pic,loc)        place label pic near graph coords or time loc
% gdotlabel<suffix>(pic,loc)     same with dot
% OUT                            loc value for labels relative to whole graph
% gdata(file,s,text)             read coords from file ; evaluate t w/ tokens s[]
% auto.<x or y>                  default x or y tick locations (for interation)
% tick.<bot|top|..>(fmt,u)       draw centered tick from given side at u w/ format
% itick.<bot|top|..>(fmt,u)      draw inward tick from given side at u w/ format
% otick.<bot|top|..>(fmt,u)      draw outward tick at coord u ; label format fmt
% grid.<bot|top|..>(fmt,u)       draw grid line at u with given side labeled
% autogrid([itick|.. bot|..],..) iterate over auto.x, auto.y, drawing tick/grids
% frame.[bot|top..]              draw frame (or one side of the frame)
% graph_frame_needed := false ;  after begingraph, not to draw a frame at all
% graph_background := color ;    fill color for frame, if defined
% endgraph                       end of graph--the result is a picture

% option `plot <picture>'        draws picture at each path knot, turns off pen
% graph_template.<tickcmd>            template paths for tick marks and grid lines
% graph_margin_fraction.low,
% graph_margin_fraction.high     fractions determining margins when no setrange
% graph_log_marks[], graph_lin_marks, graph_exp_marks    loop text strings used by auto.<x or y>
% graph_minimum_number_of_marks, graph_log_minimum                numeric parameters used by auto.<x or y>
% Autoform                       is the format string used by autogrid
% Autoform_X, Autoform_Y         if defined, are used instead

% Other than the above-documented user interface, all externally visible names
% are of the form X_.<suffix>, Y_.<suffix>, or Z_.<suffix>, or they start
% with `graph_'

% Used to depend on :

% input string.mp

% Private version of a few marith macros, fixed for double math...

newinternal Mzero ;           Mzero := -16384; % Anything at least this small is treated as zero
newinternal mlogten ;         mlogten         := mlog(10) ;
newinternal largestmantissa ; largestmantissa := 2**52 ; % internal double warningcheck
newinternal singleinfinity ;  singleinfinity  := 2**128 ;
newinternal doubleinfinity ;  doubleinfinity  := 2**1024 ;
%Mzero := -largestmantissa ; % Note that we get arithmetic overflows if we set to -doubleinfinity

% Safely convert a number to mlog form, trapping zero.

vardef graph_mlog primary x =
  if unknown x: whatever
  elseif x=0: Mzero
  else: mlog(abs x) fi
enddef ;

vardef graph_exp  primary x =
  if unknown x: whatever
  elseif x<=Mzero: 0
  else: mexp(x) fi
enddef ;

% and add the following for utility/completeness
% (replacing the definitions in mp-tool.mpiv).

vardef logten primary x =
  if unknown x: whatever
  elseif x=0: Mzero
  else: mlog(abs x)/mlog(10) fi
enddef ;

if known contextlmtxmode :
    % already defined
else :

    vardef ln primary x =
      if unknown x: whatever
      elseif x=0: Mzero
      else: mlog(abs x)/256 fi
    enddef ;

    vardef exp primary x =
      if unknown x: whatever
      elseif x<= Mzero: 0
      else: (mexp 256)**x fi
    enddef ;

fi

vardef powten primary x =
  if unknown x: whatever
  elseif x<= Mzero: 0
  else: 10**x fi
enddef ;

% Convert x from mlog form into a pair whose xpart gives a mantissa and whose
% ypart gives a power of ten.

vardef graph_Meform(expr x) =
  if x<=Mzero : origin
  else :
    save e, m ; e=floor(x/mlogten)-3; m := mexp(x-e*mlogten) ;
    if abs m<1000 : m := m*10 ; e := e-1 ; elseif abs m>=10000 : m := m/10 ; e := e+1 ; fi
    (m, e)
  fi
enddef ;

% Modified from above.

vardef graph_Feform(expr x) =
  interim warningcheck :=0 ;
  if x=0 : origin
  else :
    save e, m ; e=floor(if x<0 : -mlog(-x) else : mlog(x) fi/mlogten)-3; m := x/(10**e) ;
    if abs m<1000 : m := m*10 ; e := e-1 ; elseif abs m>=10000 : m := m/10 ; e := e+1 ; fi
    (m, e)
  fi
enddef ;

vardef graph_error(expr x,s) =
  interim showstopping :=0 ;
  show x ; errmessage s ;
enddef ;

%%%%%%%%%%%%%%%%%%%%%%%% Data structures, begingraph %%%%%%%%%%%%%%%%%%%%%%%%

vardef Z_@# = (X_@#,Y_@#) enddef ; % used in place of plain.mp's z convention

def graph_suffix(suffix $) = % convert from x or y to X_ or Y_
  if str$="x" : X_ else : Y_ fi
enddef ;

% New :

save graph_background ; color graph_background ; % if defined, fill the frame.

def begingraph(expr w, h) =
  begingroup
  save X_, Y_ ;
  X_.graph_coordinate_type =
  Y_.graph_coordinate_type = linear ; % coordinate system for each axis
  Z_.graph_dimensions = (w,h) ;       % dimensions of graph not counting axes etc.
  %also, Z_.low, Z_.high  user-specified coordinate ranges in units used in graph_current_graph

  save    graph_finished_graph ;
  picture graph_finished_graph ; % the finished part of the graph
          graph_finished_graph  = nullpicture ;
  save    graph_current_graph ;
  picture graph_current_graph ;  % what has been drawn in current coords
          graph_current_graph   = nullpicture ;
  save    graph_current_bb ;
  picture graph_current_bb ;     % picture whose bbox is graph_current_graph's w/ linewidths 0
          graph_current_bb      = nullpicture ;
  save    graph_last_drawn ;
  picture graph_last_drawn ;     % result of last gdraw or gfill
          graph_last_drawn      = nullpicture ;
  save    graph_last_path ;
  path    graph_last_path ;      % last gdraw or gfill path in data coordinates.
  save    graph_plot_picture ;
  picture graph_plot_picture ;   % a picture from the `plot' option known when plot allowed
  save    graph_foreground ;
  color   graph_foreground ;     % drawing color, if set.
  save    graph_label ;
  picture graph_label[] ;        % labels to place around the whole graph when it is done
  save    graph_autogrid_needed ;
  boolean graph_autogrid_needed ; % whether autogrid is needed
          graph_autogrid_needed  = true ;
  save    graph_frame_needed ;
  boolean graph_frame_needed ;    % whether frame needs to be drawn
          graph_frame_needed     = true ;
  save    graph_number_of_arrowheads ; % number of arrowheads for next gdraw
          graph_number_of_arrowheads = 0 ;

  if known graph_background : % new feature!
    addto graph_finished_graph contour
      origin--(w,0)--(w,h)--(0,h)--cycle withcolor graph_background ;
  fi
enddef ;

% Additional variables not explained above :
% graph_modified_lower, graph_modified_higher  pairs giving bounds used in auto<x or y>
% graph_exponent, graph_comma                  variables and macros used in auto<x or y>
% graph_modified_bias
%   an offset to graph_modified_lower and graph_modified_higher to ease computing exponents
% Some additional variables function as constants.  Most can be modified by the
% user to alter the behavior of these macros.
% Not very modifiable :  logarithmic, linear,
%                        graph_frame_pair_a, graph_frame_pair_b, graph_margin_pair
% Modifiable :           graph_template.suffix,
%                        graph_log_marks[], graph_lin_marks, graph_exp_marks,
%                        graph_minimum_number_of_marks,
%                        graph_log_minimum, Autoform


newinternal logarithmic, linear ;        % coordinate system codes
logarithmic :=1 ; linear :=2;

% note that mp-tool.mpiv defines log as log10.

%%%%%%%%%%%%%%%%%%%%%% Coordinates : setcoords, setrange %%%%%%%%%%%%%%%%%%%%%%

% Graph-related user input is `user graph coordinates' as specified by arguments
% to setcoords.
% `Internal graph coordinates' are used for graph_current_graph, graph_current_bb, Z_.low, Z_.high.
% Their meaning depends on the appropriate component of Z_.graph_coordinate_type :
%  logarithmic means internal graph coords =  mlog(user graph coords)
% -logarithmic means internal graph coords = -mlog(user graph coords)
%  linear      means internal graph coords =      (user graph coords)
% -linear      means internal graph coords =     -(user graph coords)


vardef graph_set_default_bounds =         % Set default Z_.low, Z_.high
  forsuffixes $=low,high :
    (if known X_$ : whatever else : X_$ fi, if known Y_$ : whatever else : Y_$ fi)
        = graph_margin_fraction$[llcorner graph_current_bb,urcorner graph_current_bb] +
          graph_margin_pair$ ;
  endfor
enddef ;

pair graph_margin_pair.low, graph_margin_pair.high ;
graph_margin_pair.high = -graph_margin_pair.low = (.00002,.00002) ;

% Set $, $$, $$$ so that shifting by $ then transforming by $$ and then $$$ maps
% the essential bounding box of graph_current_graph into (0,0)..Z_.graph_dimensions.
% The `essential bounding box' is either what Z_.low and Z_.high imply
% or the result of ignoring pen widths in graph_current_graph.

vardef graph_remap(suffix $,$$,$$$) =
  save p_ ;
  graph_set_default_bounds ;
  pair p_, $ ; $=-Z_.low;
  p_ = (max(X_.high-X_.low,.9), max(Y_.high-Y_.low,.9)) ;
  transform $$, $$$ ;
  forsuffixes #=$$,$$$ : xpart#=ypart#=xypart#=yxpart#=0 ; endfor
  (Z_.high+$) transformed $$ = p_ ;
  p_ transformed $$$ = Z_.graph_dimensions ;
enddef ;

graph_margin_fraction.low=-.07 ;         % bbox fraction for default range start
graph_margin_fraction.high=1.07 ;        % bbox fraction for default range stop

%def graph_with_pen_and_color(expr q) =
%  withpen penpart q
%  withcolor
%  if colormodel q=nocolormodel :
%    false
%  elseif colormodel q=graycolormodel :
%    (greypart q)
%  elseif colormodel q=rgbcolormodel :
%    (redpart q, greenpart q, bluepart q)
%  elseif colormodel q=cmykcolormodel :
%    (cyanpart q, magentapart q, yellowpart q, blackpart q)
%  fi
%  withprescript  prescriptpart q
%  withpostscript postscriptpart q
%enddef ;

def graph_with_pen_and_color(expr q) =
  withproperties q
enddef ;


% Add picture component q to picture @# and change part p to tp,
% where p is something from q that needs coordinate transformation.
% The type of p is pair or path.
% Pair o is the value of p that makes tp (0,0).  This implements the trick
% whereby using 1 instead of 0 for the width or height or the setbounds path
% for a label picture suppresses shifting in x or y.

%vardef graph_picture_conversion@#(expr q, o)(text tp) =
%  save p ;
%  if stroked q :
%    path p ; p=pathpart q;
%    addto @# doublepath tp graph_with_pen_and_color(q) dashed dashpart q ;
%  elseif filled q :
%    path p ; p=pathpart q;
%    addto @# contour tp graph_with_pen_and_color(q) ;
%  else :
%    interim truecorners :=0 ;
%    pair p ; p=llcorner q;
%    if urcorner q<>p : p := p + graph_coordinate_multiplication(o-p,urcorner q-p) ; fi
%    addto @# also q shifted ((tp)-llcorner q) ;
%  fi
%enddef ;

% This new version makes gdraw clip the result to the window defined with setrange

vardef graph_picture_conversion@#(expr q, o)(text tp) =
  save p ;
  save do_clip, tp_clipped ; boolean do_clip ; do_clip := true ;
  picture tp_clipped ; tp_clipped := nullpicture;
  if stroked q :
    path p ; p=pathpart q;
    addto tp_clipped doublepath tp graph_with_pen_and_color(q) dashed dashpart q ;
    %draw bbox tp_clipped withcolor red ;
  elseif filled q :
    path p ; p=pathpart q;
    addto tp_clipped contour tp graph_with_pen_and_color(q) ;
    %draw bbox tp_clipped withcolor green ;
  else :
    if (urcorner q<>llcorner q) : do_clip := false ; fi % Do not clip the axis labels;
    interim truecorners := 0 ;
    pair p ; p=llcorner q;
    if urcorner q<>p : p := p + graph_coordinate_multiplication(o-p,urcorner q-p) ; fi
    addto tp_clipped also q shifted ((tp)-llcorner q) ;
    %draw bbox tp_clipped withcolor if do_clip : cyan else : blue fi ;
  fi
  if do_clip :
    clip tp_clipped to origin--(xpart Z_.graph_dimensions,0)--Z_.graph_dimensions--
                                 (0,ypart Z_.graph_dimensions)--cycle ;
  fi
  addto @# also tp_clipped ;
enddef ;

def graph_coordinate_multiplication(expr a,b) = (xpart a*xpart b, ypart a*ypart b) enddef ;

vardef graph_clear_bounds@# =  numeric @#.low, @#.high ;  enddef;

% Finalize anything drawn in the present coordinate system and set up a new
% system as requested

vardef setcoords(expr tx, ty) =
  interim warningcheck :=0 ;
  if length graph_current_graph>0 :
    save s, S, T ;
    graph_remap(s, S, T) ;
    for q within graph_current_graph :
      graph_picture_conversion.graph_finished_graph(q,-s,p shifted s transformed S transformed T) ;
    endfor
    graph_current_graph := graph_current_bb := nullpicture ;
  fi
  graph_clear_bounds.X_ ; graph_clear_bounds.Y_;
  X_.graph_coordinate_type := tx ; Y_.graph_coordinate_type := ty;
enddef ;

% Set Z_.low and Z_.high to correspond to given range of user graph
% coordinates.  The text argument should be a sequence of pairs and/or strings
% with 4 components in all.

vardef setrange(text t) =
  interim warningcheck :=0 ;
  save r_ ; r_=0;
  string r_[]s ;
  for x_=
      for p_=t : if pair p_ : xpart p_, ypart fi p_, endfor :
    r_[incr r_] if string x_ : s fi = x_ ;
    if r_>2 :
      graph_set_bounds if r_=3 : X_ else : Y_ fi (r_[r_-2] if unknown r_[r_-2] : s fi, x_) ;
    fi
    exitif r_=4 ;
  endfor
enddef ;

% @# is X_ or Y_ ; l and h are numeric or string

vardef graph_set_bounds@#(expr l, h) =
  graph_clear_bounds@# ;
  if @#graph_coordinate_type>0 :
     @#low  = if unknown l :
                whatever
              else :
                if abs @#graph_coordinate_type=logarithmic : graph_mlog fi if string l : scantokens fi l
              fi ;
     @#high = if unknown h :
                whatever
              else :
                if abs @#graph_coordinate_type=logarithmic : graph_mlog fi if string h : scantokens fi h
              fi ;
  else :
    -@#high = if unknown l :
                whatever
              else :
                if abs @#graph_coordinate_type=logarithmic : graph_mlog fi if string l : scantokens fi l
              fi ;
    -@#low  = if unknown h :
                whatever
              else :
                if abs @#graph_coordinate_type=logarithmic : graph_mlog fi if string h : scantokens fi h
              fi ;
  fi
enddef ;

%%%%%%%%%%%%%%%%%%%%%%%%% Converting path coordinates %%%%%%%%%%%%%%%%%%%%%%%%%

% Find the result of scanning path p and using macros tx and ty to adjust the
% x and y parts of each coordinate pair.  Boolean parameter c tells whether to
% force the result to be polygonal.

vardef graph_scan_path(expr p, c)(suffix tx, ty) =
  if (str tx="") and (str ty="") :  p
  else :
    save r_ ; path r_;
    r_ := graph_pair_adjust(point 0 of p, tx, ty)
    if path p :
      for t=1 upto length p :
        if c : --
        else : ..controls graph_pair_adjust(postcontrol(t-1) of p, tx, ty)
          and graph_pair_adjust(precontrol t of p, tx, ty) ..
        fi
        graph_pair_adjust(point t of p, tx, ty)
      endfor
      if cycle p : &cycle fi
    fi ;
    if pair p : point 0 of fi r_
  fi
enddef ;

vardef graph_pair_adjust(expr p)(suffix tx, ty) = (tx xpart p, ty ypart p) enddef ;

% Convert path p from user graph coords to internal graph coords.

vardef graph_convert_user_path_to_internal primary p =
  interim warningcheck :=0 ;
  if known p :
    graph_scan_path(p,
      (abs X_.graph_coordinate_type<>linear) or (abs Y_.graph_coordinate_type<>linear),
      if abs X_.graph_coordinate_type=logarithmic : graph_mlog fi,
      if abs Y_.graph_coordinate_type=logarithmic : graph_mlog fi)
      transformed  (identity
        if X_.graph_coordinate_type<0 : xscaled -1 fi
        if Y_.graph_coordinate_type<0 : yscaled -1 fi)
  fi
enddef ;

% Convert label location t_ from user graph coords to internal graph coords.
% The label location should be a pair, or two numbers/strings.  If t_ is empty
% or a single item of non-pair type, just return t_.  Unknown coordinates
% produce unknown components in the result.

vardef graph_label_convert_user_to_internal(text t_) =
  save n_ ; n_=0;
  interim warningcheck :=0 ;
  if 0 for x_=t_ : +1 if pair x_ : +1 fi endfor <= 1 :
    t_
  else :
    n_0 = n_1 = 0 ;
    point 0 of graph_convert_user_path_to_internal (
      for x_=
        for y_=t_ : if pair y_ : xpart y_, ypart fi y_, endfor
        0, 0 :
        if known x_ : if string x_ : scantokens fi x_
        else : hide(n_[n_] :=whatever) 0
        fi
        exitif incr n_=2 ;
      ,endfor) + (n_0,n_1)
  fi
enddef ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Reading data files %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Read a line from file f, extract whitespace-separated tokens ignoring any
% initial "%", and return true if at least one token is found.  The tokens
% are stored in @#1, @#2, .. with "" in the last @#[] entry.

% String manipulation routines for MetaPost
% It is harmless to input this file more than once.

% vardef isdigit primary d =
%     ("0"<=d)and(d<="9")
% enddef ;

% Number of initial characters of string s where `c <character>' is true

vardef graph_cspan(expr s)(text c) =
    0
    for i=1 upto length s:
        exitunless c substring (i-1,i) of s;
        + 1
    endfor
enddef ;

% String s is composed of items separated by white space.  Lop off the first
% item and the surrounding white space and return just the item.

vardef graph_loptok suffix s =
    save t, k;
    k = graph_cspan(s," ">=);
    if k > 0 :
        s := substring(k,infinity) of s ;
    fi
    k := graph_cspan(s," "<);
    string t;
    t = substring (0,k) of s;
    s := substring (k,infinity) of s;
    s := substring (graph_cspan(s," ">=),infinity) of s;
    t
enddef ;

vardef graph_read_line@#(expr f) =
  save n_, s_ ; string s_;
  s_ = readfrom f ;
  string @#[] ;
  if s_<>EOF :
    @#0 := s_ ;
    @#1 := graph_loptok s_ ;
    n_ = if @#1="%" : 0 else : 1 fi ;
    forever :
      @#[incr n_] := graph_loptok s_ ;
      exitif @#[n_]="" ;
    endfor
    @#1<>""
  else : false
  fi
enddef ;

% Execute c for each line of data read from file f, and stop at the first
% line with no data.  Commands c can use line number i and tokens $1, $2, ...
% and j is the number of fields.

% def gdata(expr f)(suffix $)(text c) =
%   for i=1 upto largestmantissa :
%     exitunless graph_read_line$(f) ;
%     c
%   endfor ;
% enddef ;

def gdata(expr f)(suffix $)(text c) =
  for i=1 upto largestmantissa :
    exitunless graph_read_line$(f) ;
    c
  endfor
enddef ;

% Read a path from file f. The path is terminated by blank line or EOF.

vardef graph_readpath(expr f) =
  interim warningcheck :=0 ;
  save s ;
  gdata(f, s, if i>1 :--fi
      if s2="" : (            i, scantokens s1)
      else :     (scantokens s1, scantokens s2) fi
  )
enddef ;

% Append coordinates t to polygonal path @#.  The coordinates can be numerics,
% strings, or a single pair.

vardef augment@#(text t) =
  interim warningcheck := 0 ;
  if not path begingroup @# endgroup :
    graph_error(begingroup @# endgroup, "Cannot augment--not a path") ;
  else :
    def graph_comma= hide(def graph_comma=,enddef) enddef ;
    if known @# :  @# :=@#--  else :  @#=  fi
    (for p=t :
       graph_comma if string p : scantokens fi p
     endfor) ;
  fi
enddef ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Drawing and filling %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Unknown pair components are set to 0 because glabel and gdotlabel understand
% unknown coordinates as `0 in absolute units'.

vardef graph_unknown_pair_bbox(expr p) =
  interim warningcheck:=0 ;
  if known p : addto graph_current_bb doublepath p ;
  else :
    save x,y ;
    z = llcorner graph_current_bb ;
    if unknown xpart p : xpart p= else : x := fi 0 ;
    if unknown ypart p : ypart p= else : y := fi 0 ;
    addto graph_current_bb doublepath (p+z) ;
  fi
  graph_current_bb := image(fill llcorner graph_current_bb..urcorner graph_current_bb--cycle) ;
enddef ;

% Initiate a gdraw or gfill command.  This must be done before scanning the
% argument, because that could invoke the `if known graph_plot_picture' test in a following
% plot option .

def graph_addto =
  def graph_errorbar_text = enddef ;
  color graph_foreground ;
  path graph_last_path ;
  graph_last_drawn := graph_plot_picture := nullpicture ; addto graph_last_drawn
enddef;

% Handle the part of a gdraw command that uses path or data file p.

def graph_draw expr p =
  if string p :    hide(graph_last_path := graph_readpath(p) ;)
                   graph_convert_user_path_to_internal graph_last_path
  elseif path p or pair p :
                   hide(graph_last_path := p ;)
                   graph_convert_user_path_to_internal p
  else : graph_error(p,"gdraw argument should be a data file or a path")
        origin
  fi
  withpen currentpen graph_withlist _op_
enddef ;

% Handle the part of a gdraw command that uses path or data file p.

def graph_fill expr p =
  if string p :    hide(graph_last_path := graph_readpath(p) --cycle ;)
                   graph_convert_user_path_to_internal graph_last_path
  elseif cycle p : hide(graph_last_path := p ;)
                   graph_convert_user_path_to_internal p
  else : graph_error(p,"gfill argument should be a data file or a cyclic path")
        origin..cycle
  fi graph_withlist _op_
enddef ;

def gdraw = graph_addto doublepath graph_draw enddef ;
def gfill = graph_addto contour graph_fill enddef ;

% This is used in graph_draw and graph_fill to allow postprocessing graph_last_drawn

def graph_withlist text t_ = t_ ; graph_post_draw; enddef;

def witherrorbars(text t) text options =
    hide(
        def graph_errorbar_text = t enddef ;
        save pic ; picture pic ; pic := image(draw origin _op_ options ;) ;
        if color colorpart pic : graph_foreground := colorpart pic ; fi
    )
    options
enddef ;

% new feature: graph_errorbars

picture graph_errorbar_picture ; graph_errorbar_picture := image(draw (left--right) scaled .5 ;) ;
%picture graph_xbar_picture ;    graph_xbar_picture := image(draw (down--up)    scaled .5 ;) ;
%picture graph_ybar_picture ;    graph_ybar_picture := image(draw (left--right) scaled .5 ;) ;

vardef graph_errorbars(text t) =
    if known graph_last_path :
        save n, p, q ; path p ; pair q ;
        save pic ; picture pic[] ; pic0 := nullpicture ;
        pic1 := if     known graph_xbar_picture :     graph_xbar_picture
                elseif known graph_errorbar_picture : graph_errorbar_picture rotated 90
                else :                                nullpicture fi ;
        pic2 := if     known graph_ybar_picture :     graph_ybar_picture
                elseif known graph_errorbar_picture : graph_errorbar_picture
                else :                                nullpicture fi ;
        if length pic1>0 :
            pic1 := pic1 scaled graph_shapesize ;
            setbounds pic1 to origin..cycle ;
        fi
        if length pic2>0 :
            pic2 := pic2 scaled graph_shapesize ;
            setbounds pic2 to origin..cycle ;
        fi
        for i=0 upto length graph_last_path :
            clearxy ; z = point i of graph_last_path ;
            n := 1 ;
            for $=t :
                if known $ :
                    q := if path $ : if length $>i : point i of $ else : origin fi
                       elseif pair $ : $ elseif numeric $ : ($,$) else : origin fi ;
                    if q<>origin :
                        p := graph_convert_user_path_to_internal ((
                            if n=1 :
                                (-xpart q,0)--(ypart q,0)
                            else :
                                (0,-xpart q)--(0,ypart q)
                            fi ) shifted z) ;
                        addto pic0 doublepath p ;
                        if length pic[n]>0 :
                           if ypart q<>0 :
                               addto pic0 also pic[n] shifted point 1 of p ;
                           fi
                           if xpart q<>0 :
                               addto pic0 also pic[n] rotated 180 shifted point 0 of p ;
                           fi
                        fi
                    fi
                fi
                exitif incr n>3 ;
            endfor
        endfor
        if length pic0>0 :
            save bg, fg ; color bg, fg ;
            bg := if known graph_background : graph_background else : background fi ;
            fg := if known graph_foreground : graph_foreground else : black fi ;
            addto graph_current_graph also pic0 withpen currentpen scaled 2  _op_ withcolor bg ;
            addto graph_current_graph also pic0 withpen currentpen scaled .5 _op_ withcolor fg ;
        fi
    fi
enddef ;

% Set graph_plot_picture so the postprocessing step will plot picture p at each path knot.
% Also select nullpen to suppress stroking.

def plot expr p =
  if known graph_plot_picture :
    withpen nullpen
    hide (graph_plot_picture := image(
        if bounded p : for q within p : graph_addto_currentpicture q endfor    % Save memory
        else : graph_addto_currentpicture p
        fi graph_setbounds origin..cycle))
  fi
enddef ;

% This hides a semicolon that could prematurely end graph_withlist's text argument

def graph_addto_currentpicture primary p = addto currentpicture also p ; enddef;
def graph_setbounds = setbounds currentpicture to enddef ;

def gdrawarrow =    graph_number_of_arrowheads := 1 ; gdraw enddef;
def gdrawdblarrow = graph_number_of_arrowheads := 2 ; gdraw enddef;

% Post-process the filled or stroked picture graph_last_drawn as follows : (1) update
% the bounding box information ; (2) transfer it to graph_current_graph unless the pen has
% been set to nullpen to disable stroking ; (3) plot graph_plot_picture at each knot.

vardef graph_post_draw =
  save p ; path p ; p = pathpart graph_last_drawn ;
  graph_unknown_pair_bbox(p) ;
  if filled graph_last_drawn or not graph_is_null(penpart graph_last_drawn) :
    addto graph_current_graph also graph_last_drawn ;
  fi
  graph_errorbars(graph_errorbar_text) ;
  if length graph_plot_picture>0 :
    for i=0 upto length p if cycle p : -1 fi :
      addto graph_current_graph also graph_plot_picture shifted point i of p ;
    endfor
    picture graph_plot_picture ;
  fi
  if graph_number_of_arrowheads>0 :
    graph_draw_arrowhead(p, graph_with_pen_and_color(graph_last_drawn)) ;
    if graph_number_of_arrowheads>1 :
      graph_draw_arrowhead(reverse p, graph_with_pen_and_color(graph_last_drawn)) ;
    fi
    graph_number_of_arrowheads := 0 ;
  fi
enddef ;

vardef graph_is_null(expr p) = (urcorner p=origin) and (llcorner p=origin) enddef ;

vardef graph_draw_arrowhead(expr p)(text w) = % Draw arrowhead for path p, with list w
  %save r ; r := angle(precontrol infinity of p shifted -point infinity of p) ;
  addto graph_current_graph also
    image(fill arrowhead (graph_arrowhead_extent(precontrol infinity of p,point infinity of p)) w ;
          draw arrowhead (graph_arrowhead_extent(precontrol infinity of p,point infinity of p)) w
            undashed ;
%if (r mod 90 <> 0) : % orientation can be wrong due to remapping
%  draw textext("\tfxx " & decimal r) shifted point infinity of p withcolor blue ;
%fi
          graph_setbounds point infinity of p..cycle ;
    ) ; % rotatedabout(point infinity of p,-r) ;
enddef ;

vardef graph_arrowhead_extent(expr p, q) =
  if p<>q : (q - 100pt*unitvector(q-p)) -- fi
  q
enddef ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Drawing labels %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Argument c is a drawing command that needs an additional argument p that gives
% a location in internal graph coords.  Draw in graph_current_graph enclosed in a setbounds
% path. Unknown components of p cause the setbounds path to have width or height 1 instead of 0.
% Then graph_unknown_pair_bbox sets these components to 0 and graph_picture_conversion
% suppresses subsequent repositioning.

def graph_draw_label(expr p)(suffix $)(text c) =
  save sdim_ ; pair sdim_;
  sdim_ := (if unknown xpart p : 1+ fi 0, if unknown ypart p : 1+ fi 0) ;
  graph_unknown_pair_bbox(p) ;
  addto graph_current_graph also
    image(c(p) ; graph_setbounds p--p+sdim_--cycle) _op_
enddef ;

% Stash the result drawing command c in the graph_label table using with list w and
% an index based on angle mfun_laboff$.

vardef graph_stash_label(suffix $)(text c) text w =
  graph_label[1.5+angle mfun_laboff$ /90] = image(c(origin) w) ;
enddef ;

def graph_label_location primary p =
  if pair p : graph_draw_label(p)
  elseif numeric p : graph_draw_label(point p of pathpart graph_last_drawn)
  else : graph_stash_label
  fi
enddef ;

% Place label p at user graph coords t using with list w. (t is a time, a pair
% or 2 numerics or strings).

vardef glabel@#(expr p)(text t) text w  =
  graph_label_location graph_label_convert_user_to_internal(t)  (@#,label@#(p)) w ; enddef;

% Place label p at user graph coords t using with list w and draw a dot there.
% (t is a time, a pair, or 2 numerics or strings).

vardef gdotlabel@#(expr p)(text t) text w =
  graph_label_location graph_label_convert_user_to_internal(t)  (@#,dotlabel@#(p)) w ; enddef;

def OUT = enddef ;       % location text for outside labels

%%%%%%%%%%%%%%%%%%%%%%%%%% Grid lines, ticks, etc. %%%%%%%%%%%%%%%%%%%%%%%%%%

% Grid lines and tick marks are transformed versions of the templates below.
% In the template paths, (0,0) is on the edge of the frame and inward is to
% the right.

path graph_template.tick, graph_template.itick, graph_template.otick, graph_template.grid ;
graph_template.tick  = (-3.5bp,0)--(3.5bp,0) ;
graph_template.itick = origin--(7bp,0) ;
graph_template.otick = (-7bp,0)--origin ;
graph_template.grid  = origin--(1,0) ;

vardef  tick@#(expr f,u) text w =  graph_tick_label(@#,@,false,f,u,w) ;  enddef;

vardef itick@#(expr f,u) text w =  graph_tick_label(@#,@,false,f,u,w) ;  enddef;

vardef otick@#(expr f,u) text w =  graph_tick_label(@#,@,false,f,u,w) ;  enddef;

vardef  grid@#(expr f,u) text w =  graph_tick_label(@#,@,true,f,u,w) ;  enddef;


% Produce a tick or grid mark for label suffix $, graph_template suffix $$,
% coordinate value u, and with list w.  Boolean c tells whether graph_template$$
% needs scaling by X_.graph_dimensions or Y_.graph_dimensions,
% and f gives a format string or a label picture.

def graph_tick_label(suffix $,$$)(expr c, f, u)(text w) =
  graph_draw_label(graph_label_convert_user_to_internal(graph_generate_label_position($,u)),,
                   draw graph_gridline_picture$($$,c,f,u,w) shifted)
enddef ;

% Generate label positioning arguments appropriate for label suffix $ and
% coordinate u.

def graph_generate_label_position(suffix $)(expr u) =
  if pair u : u elseif xpart mfun_laboff.$=0 : u,whatever else : whatever,u fi
enddef ;

% Generate a picture of a grid line labeled with coordinate value u, picture
% or format string f, and with list w.  Suffix @# is bot, top, lft, or rt,
% suffix $ identifies entries in the graph_template table, and boolean c tells
% whether to scale graph_template$.

vardef graph_gridline_picture@#(suffix $)(expr c, f, u)(text w) =
  if unknown u : graph_error(u,"Label coordinate should be known") ; nullpicture
  else :
    save p ; path p;
    interim warningcheck :=0 ;
    graph_autogrid_needed :=false ;
    p = graph_template$ zscaled -mfun_laboff@#
        if c : graph_xyscale fi
        shifted (((.5 + mfun_laboff@# dotprod (.5,.5)) * mfun_laboff@#) graph_xyscale) ;
    image(draw p w ;
        label@#(if string f : format(f,u) else : f fi, point 0 of p) w)
  fi
enddef ;

def graph_xyscale = xscaled X_.graph_dimensions yscaled Y_.graph_dimensions enddef ;

% Draw the frame or the part corresponding to label suffix @# using with list w.

vardef frame@# text w =
  graph_frame_needed :=false ;
  picture p_ ;
  p_ = image(draw
    if str@#<>"" :  subpath round(angle mfun_laboff@#*graph_frame_pair_a+graph_frame_pair_b) of  fi
    unitsquare graph_xyscale  w) ;
  graph_draw_label((whatever,whatever),,draw p_ shifted) ;
enddef ;

pair graph_frame_pair_a ; graph_frame_pair_a=(1,1)/90; % unitsquare subpath is linear in label angle
pair graph_frame_pair_b ; graph_frame_pair_b=(.75,2.25);

%%%%%%%%%%%%%%%%%%%%%%%%%% Automatic grid selection %%%%%%%%%%%%%%%%%%%%%%%%%%

string graph_log_marks[] ;           % marking options per decade for logarithmic scales
string graph_lin_marks ;             % mark spacing options per decade for linear scales
string graph_exp_marks ;             % exponent spacing options for logarithmic scales
newinternal graph_minimum_number_of_marks, graph_log_minimum ;
graph_minimum_number_of_marks := 4 ; % minimum number marks generated by auto.x or auto.y
graph_log_minimum := mlog 3 ;        % revert to uniform marks when largest/smallest < this

def Gfor(text t) = for i=t endfor enddef ; % to shorten the mark templates below

graph_log_marks[1]="1,2,5" ;
graph_log_marks[2]="1,1.5,2,3,4,5,7" ;
graph_log_marks[3]="1Gfor(6upto10 :,i/5)Gfor(5upto10 :,i/2)Gfor(6upto9 :,i)" ;
graph_log_marks[4]="1Gfor(11upto20 :,i/10)Gfor(11upto25 :,i/5)Gfor(11upto19 :,i/2)" ;
graph_log_marks[5]="1Gfor(21upto40 :,i/20)Gfor(21upto50 :,i/10)Gfor(26upto49 :,i/5)" ;
graph_lin_marks="10,5,2" ;           % start with 10 and go down; a final `,1' is appended
graph_exp_marks="20,10,5,2,1" ;

Ten_to0 =     1 ;
Ten_to1 =    10 ;
Ten_to2 =   100 ;
Ten_to3 =  1000 ;
Ten_to4 = 10000 ;

% Determine the X_ or Y_ bounds on the range to be covered by automatic grid
% marks.  Suffix @# is X_ or Y_.  The result is logarithmic or linear to specify the
% type of grid spacing to use.  Bounds are returned in variables local to
% begingraph..endgraph : pairs graph_modified_lower and graph_modified_higher
%  are upper and lower bounds in
% `modified exponential form'.  In modified exponential form, (x,y) means
% (x/1000)*10^y, where 1000<=abs x<10000.

vardef graph_bounds@# =
  interim warningcheck :=0 ;
  save l, h ;
  graph_set_default_bounds ;
  if @#graph_coordinate_type>0 : (l,h) else : -(h,l) fi = (@#low, @#high) ;
  if abs @#graph_coordinate_type=logarithmic :
    graph_modified_lower  := graph_Meform(l)+graph_modified_bias ;
    graph_modified_higher := graph_Meform(h)+graph_modified_bias ;
    if h-l >= graph_log_minimum : logarithmic else : linear fi
  else :
    graph_modified_lower  := graph_Feform(l)+graph_modified_bias ;
    graph_modified_higher := graph_Feform(h)+graph_modified_bias ;
    linear
  fi
enddef ;

pair graph_modified_bias ; graph_modified_bias=(0,3);
pair graph_modified_lower, graph_modified_higher ;

% Scan graph_log_marks[k] and evaluate tokens t for each m where l<=m<=h.

def graph_scan_marks(expr k, l, h)(text t) =
  for m=scantokens graph_log_marks[k] :
    exitif m>h ;
    if m>=l : t fi
  endfor
enddef ;

% Scan graph_log_marks[k] and evaluate tokens t for each m and e where m*10^e belongs
% between l and h (inclusive), where both l and h are in modified exponent form.

def graph_scan_mark(expr k, l, h)(text t) =
  for e=ypart l upto ypart h :
    graph_scan_marks(k, if e>ypart l : 1 else : xpart l/1000 fi,
        if e<ypart h : 10 else : xpart h/1000 fi,  t)
  endfor
enddef ;

% Select a k for which graph_scan_mark(k,...) gives enough marks.

vardef graph_select_mark =
  save k ;
  k = 0 ;
  forever :
    exitif unknown graph_log_marks[k+1] ;
    exitif 0 graph_scan_mark(incr k, graph_modified_lower, graph_modified_higher, +1)
           >= graph_minimum_number_of_marks ;
  endfor
  k
enddef ;

% Try to select an exponent spacing from graph_exp_marks.  If successful, set @# and
% return true

vardef graph_select_exponent_mark@# =
  numeric @# ;
  for e=scantokens graph_exp_marks :
    @# = e ;
    exitif floor(ypart graph_modified_higher/e) -
           floor(graph_modified_exponent_ypart(graph_modified_lower)/e)
           >= graph_minimum_number_of_marks ;
    numeric @# ;
  endfor
  known @#
enddef ;

vardef graph_modified_exponent_ypart(expr p) = ypart p  if xpart p=1000 : -1 fi  enddef ;

% Compute the mark spacing d between xpart graph_modified_lower and xpart graph_modified_higher.

vardef graph_tick_mark_spacing =
  interim warningcheck :=0 ;
  save m, n, d ;
  m = graph_minimum_number_of_marks ;
  n = 1 for i=1 upto
                (mlog(xpart graph_modified_higher-xpart graph_modified_lower) - mlog m)/mlogten :
        *10 endfor ;
  if n<=1000 :
    for x=scantokens graph_lin_marks :
      d = n*x ;
      exitif 0 graph_generate_numbers(d,+1)>=m ;
      numeric d ;
    endfor
  fi
  if known d : d else : n fi
enddef ;

def graph_generate_numbers(expr d)(text t) =
  for m = d*ceiling(xpart graph_modified_lower/d) step d until xpart graph_modified_higher :
    t
  endfor
enddef ;

% Evaluate tokens t for exponents e in multiples of d in the range determined
% by graph_modified_lower and graph_modified_higher.

def graph_generate_exponents(expr d)(text t) =
  for e = d*floor(graph_modified_exponent_ypart(graph_modified_lower)/d+1)
      step d until d*floor(ypart graph_modified_higher/d) :  t
  endfor
enddef ;

% Adjust graph_modified_lower and graph_modified_higher so their exponent parts match
% and they are in true exponent form ((x,y) means x*10^y).  Return the new exponent.

vardef graph_match_exponents =
  interim warningcheck := 0 ;
  save e ;
  e+3 = if graph_modified_lower=graph_modified_bias : ypart graph_modified_higher
        elseif graph_modified_higher=graph_modified_bias : ypart graph_modified_lower
        else : max(ypart graph_modified_lower, ypart graph_modified_higher) fi ;
  forsuffixes $=graph_modified_lower, graph_modified_higher :
    $ := (xpart $ for i=ypart $ upto e+2 : /(10) endfor, e) ;
  endfor
  e
enddef ;

% Assume e is an integer and either m=0 or 1<=abs(m)<10000.  Find m*(10^e)
% and represent the result as a string if its absolute value would be at least
% 4096 or less than .1.  It is OK to return 0 as a string or a numeric.

vardef graph_factor_and_exponent_to_string(expr m, e) =
  if (e>3)or(e<-4) :
    decimal m & "e" & decimal e
  elseif e>=0 :
    if abs m<infinity/Ten_to[e] :
          m*Ten_to[e]
    else : decimal m & "e" & decimal e
    fi
  else :
    save x ; x=m/Ten_to[-e];
    if abs x>=.1 : x else : decimal m & "e" & decimal e fi
  fi
enddef ;

def auto suffix $ =
  hide(def graph_comma= hide(def graph_comma=,enddef) enddef)
  if graph_bounds.graph_suffix($)=logarithmic :
    if graph_select_exponent_mark.graph_exponent :
      graph_generate_exponents(graph_exponent,
        graph_comma graph_factor_and_exponent_to_string(1,e))
    else :
      graph_scan_mark(graph_select_mark, graph_modified_lower, graph_modified_higher,
        graph_comma graph_factor_and_exponent_to_string(m,e))
    fi
  else :
    hide(graph_exponent :=graph_match_exponents)
    graph_generate_numbers(graph_tick_mark_spacing,
      graph_comma graph_factor_and_exponent_to_string(m,graph_exponent))
  fi
enddef ;

string Autoform ; Autoform = "%g";

%vardef autogrid(suffix tx, ty) text w =
%  graph_autogrid_needed :=false ;
%  if str tx<>"" : for x=auto.x : tx(Autoform,x) w ; endfor fi
%  if str ty<>"" : for y=auto.y : ty(Autoform,y) w ; endfor fi
%enddef ;

% We redefine autogrid, adding the possibility of differing X and Y
% formats.

% string Autoform_X ; Autoform_X := "@.0e" ;
% string Autoform_Y ; Autoform_Y := "@.0e" ;

vardef autogrid(suffix tx, ty) text w =
    graph_autogrid_needed := false ;
    if str tx <> "" :
        for x=auto.x :
            tx (
                if string Autoform_X :
                    if Autoform_X <> "" :
                        Autoform_X
                    else :
                        Autoform
                    fi
                else :
                    Autoform
                fi,
                x
            ) w ;
        endfor
    fi
    if str ty <> "" :
        for y=auto.y :
            ty (
                if string Autoform_Y :
                    if Autoform_Y <> "" :
                        Autoform_Y
                    else :
                        Autoform
                    fi
                else :
                    Autoform
                fi,
                y
            ) w ;
        endfor
    fi
enddef ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% endgraph %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

def endgraph =
  if graph_autogrid_needed : autogrid(otick.bot, otick.lft) ; fi
  if    graph_frame_needed : frame ; fi
  setcoords(linear,linear) ;
  interim truecorners :=1 ;
  for  b=bbox graph_finished_graph :
    setbounds graph_finished_graph to b ;
    for i=0 step .5 until 3.5 :
      if known graph_label[i] :
        addto graph_finished_graph also graph_label[i] shifted point i of b ;
      fi
    endfor
  endfor
  graph_finished_graph
  endgroup
enddef ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% We format in luatex (using \mathematics{}) ...
% we could pass via variables and save escaping as that is inefficient

if known contextlmtxmode :
% already defined
elseif unknown context_mlib :

    vardef escaped_format(expr s) =
        "" for n=0 upto length(s) : &
            if ASCII substring (n,n+1) of s = 37 :
                "@"
            else :
                substring (n,n+1) of s
            fi
        endfor
    enddef ;

    vardef strfmt(expr f, x) = % maybe use mfun_ namespace
        "\MPgraphformat{" & escaped_format(f) & "}{" & mfun_tagged_string(x) & "}"
    enddef ;

    vardef varfmt(expr f, x) = % maybe use mfun_ namespace
        "\MPformatted{" & escaped_format(f) & "}{" & mfun_tagged_string(x) & "}"
    enddef ;

    vardef format   (expr f, x) = textext(strfmt(f,x)) enddef ;
    vardef formatted(expr f, x) = textext(varfmt(f,x)) enddef ;

fi ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% A couple of extensions :

% Define a function plotsymbol() returning a picture : 10 different shapes,
% unfilled outline, interior filled with different shades of the background.
% This allows overlapping points on a plot to be more distinguishable.

vardef graph_shapesize = (.33BodyFontSize) enddef ;

path graph_shape[] ; % (internal) symbol path

graph_shape[0] := (0,0) ;                      % point
graph_shape[1] := fullcircle ;                 % circle
graph_shape[2] := (up -- down) scaled .5 ;     % vertical bar

for i = 3 upto 9 :                          % polygons
    graph_shape[i] :=
        for j = 0 upto i-1 :
            (up scaled .5) rotated (360j/i) --
        endfor cycle ;
endfor

graph_shape[12] := graph_shape[2] rotated +90 ;   % horizontal line
graph_shape[22] := graph_shape[2] rotated +45 ;   % backslash
graph_shape[32] := graph_shape[2] rotated -45 ;   % slash
graph_shape[13] := graph_shape[3] rotated 180 ;   % down  triangle
graph_shape[23] := graph_shape[3] rotated -90 ;   % right triangle
graph_shape[33] := graph_shape[3] rotated +90 ;   % left  triangle
graph_shape[14] := graph_shape[4] rotated +45 ;   % square
graph_shape[15] := graph_shape[5] rotated 180 ;   % down pentagon
graph_shape[16] := graph_shape[6] rotated +90 ;   % turned hexagon
graph_shape[17] := graph_shape[7] rotated 180 ;
graph_shape[18] := graph_shape[8] rotated +22.5 ;

numeric l ;

for j = 5 upto 9 :
    l := length(graph_shape[j]) ;
    pair p[] ;
    for i = 0 upto l :
        p[i] = whatever [point i             of graph_shape[j],
                         point (i+2   mod l) of graph_shape[j]] ;
        p[i] = whatever [point (i+1   mod l) of graph_shape[j],
                         point (i+l-1 mod l) of graph_shape[j]] ;
    endfor
    graph_shape[20+j] := for i = 0 upto l : point i of graph_shape[j]--p[i]--endfor cycle ;
endfor

path s    ; s := graph_shape[4] ;
path q    ; q := s scaled .25 ;
numeric l ; l := length(s) ;

pair p[] ;

graph_shape[24] := for i = 0 upto l-1 :
     hide(
         p[i]   = whatever [point i   of s, point (i+1   mod l) of s] ;
         p[i]   = whatever [point i   of q, point (i-1+l mod l) of q] ;
         p[i+l] = whatever [point i   of s, point (i+1   mod l) of s] ;
         p[i+l] = whatever [point i+1 of q, point (i+2   mod l) of q] ;
     )
     point i of q -- p[i] -- p[i+l] --
endfor cycle ;

graph_shape[34] := graph_shape[24] rotated 45 ;

% usage : gdraw p plot plotsymbol( 1,1) ;  % a filled circle
% usage : gdraw p plot plotsymbol(14,0) ;  % a square
% usage : gdraw p plot plotsymbol( 4,.5) ; % a 50% filled diamond

def          stars(expr f) = plotsymbol(25,f) enddef ; % a 5-point star
def         points(expr f) = plotsymbol( 0,f) enddef ;
def        circles(expr f) = plotsymbol( 1,f) enddef ;
def        crosses(expr f) = plotsymbol(34,f) enddef ;
def        squares(expr f) = plotsymbol(14,f) enddef ;
def       diamonds(expr f) = plotsymbol( 4,f) enddef ; % a turned square
def    uptriangles(expr f) = plotsymbol( 3,f) enddef ;
def  downtriangles(expr f) = plotsymbol(13,f) enddef ;
def  lefttriangles(expr f) = plotsymbol(33,f) enddef ;
def righttriangles(expr f) = plotsymbol(23,f) enddef ;

% f (fill) is color, numeric or boolean, otherwise background.
def plotsymbol(expr n, f) text t =
    if known graph_shape[n] :
        image(
            save bg, fg ; color bg, fg ;
            bg := if known graph_background : graph_background else : background fi ;
            save pic ; picture pic ; pic := image(draw origin _op_ t ;) ;
            if color colorpart pic : graph_foreground := colorpart pic ; fi
            fg := if known graph_foreground : graph_foreground else : black fi ;
            save p ; path p ; p = graph_shape[n] scaled graph_shapesize ;
            draw p withcolor bg withpen currentpen scaled 2 ; % halo
            if cycle p :
                fill p withcolor
                    if known f :
                        if color f :
                            f
                        elseif numeric f :
                            f[bg,fg]
                        elseif boolean f and f :
                            fg
                        else
                            bg
                        fi
                    else :
                        bg
                    fi ;
            fi
            draw p _op_ t ;
        )
    else :
        nullpicture
    fi
    t
enddef ;

% standard resistance color code: rainbow sequence (from /usr/share/X11/rgb.txt)
color resistance_color[] ;                      string resistance_name[] ;
resistance_color0 = (0,0,0) ;                   resistance_name0 = "black" ;
resistance_color1 = (165/255,42/255,42/255) ;   resistance_name1 = "brown" ;
resistance_color2 = (1,0,0) ;                   resistance_name2 = "red" ;
resistance_color3 = (1,165/255,0) ;             resistance_name3 = "orange" ;
resistance_color4 = (1,1,0) ;                   resistance_name4 = "yellow" ;
resistance_color5 = (0,1,0) ;                   resistance_name5 = "green" ;
resistance_color6 = (0,0,1) ;                   resistance_name6 = "blue" ;
resistance_color7 = (148/255,0,211/255) ;       resistance_name7 = "darkviolet" ;
resistance_color8 = (190/255,190/255,190/255) ; resistance_name8 = "gray" ;
resistance_color9 = (1,1,1) ;                   resistance_name9 = "white" ;

%def rainbow(expr f) =
%    ((abs(5f) mod 5) + 2 - floor((abs(5f) mod 5) + 2))
%       [resistance_color[  floor((abs(5f) mod 5) + 2)],
%        resistance_color[ceiling((abs(5f) mod 5) + 2)]]
%enddef ;
def rainbow(expr f) =
    hide(numeric n_ ; n_ = (abs(5f) mod 5) + 2 ;)
    (n_-floor(n_))[resistance_color[floor n_],resistance_color[ceiling n_]]
enddef ;

% The following extensions are not specific to graph and could be moved to metafun...

% sort a path. Efficient en memory use, not so efficient in sorting long paths...

vardef sortpath (suffix $) (text t) = % t can be "xpart", "ypart", "length", "angle", ...
    if path $ :
        if length $ > 0 :
            save n, k ; n := length $ ;
            for i=0 upto n :
                k := i ;
                for j=i+1 upto n :
                    if t (point j of $) < t (point k of $) :
                        k := j ;
                    fi
                endfor
                if k>i :
                    $ := if i>0 : subpath (0,i-1) of $ -- fi
                         point k of $ --
                         subpath (i,k-1) of $
                         if k<n : -- subpath (k+1,n) of $ fi
                    ;
                fi
            endfor
        fi
    fi
enddef ;

% convert a polygon path to a smooth path (useful, e.g. as a guide to the eye)

def smoothpath (suffix $) =
    if path $ :
    (for i=0 upto length $ :
        if i>0 : .. fi
        (point i of $)
     endfor )
    fi
enddef ;

% return a path of a function func(x) with abscissa running from f to t over n intervals

def makefunctionpath (expr f, t, n) (text func) =
    (for x=f step ((t-f)/(abs n)) until t :
        if x<>f : -- fi
        (x, func)
    endfor )
enddef ;

% shift a path, point by point
%
% example :
%
%   p1 := addtopath(p0,(.1normaldeviate,.1normaldeviate)) ;

vardef addtopath (suffix p) (text t) =
    if path p :
    (for i=0 upto length p :
        if i>0 : -- fi
        hide(clearxy ; z = point i of p ;) z shifted t
    endfor)
    fi
enddef ;

% return a new path of a function func(z) using the same abscissa as an existing path

vardef functionpath (suffix p) (text func) =
    (for i=0 upto length p :
        if i>0 : .. fi
        (hide(x := xpart(point i of p))x,func) %(hide(clearxy ; z = point i of p)x,func)
     endfor )
enddef ;

% least-squares "fit" to a polynomial
%
% example :
%
%   path p[] ;
%   numeric a[] ; a0 := 1 ; a1 := .1 ; a2 := .01 ; a3 := .001 ; a4 := 0.0001 ;
%   p0 := makefunctionpath(0,5,10,polynomial_function(a,4,x)) ;
%   p1 := addtopath(p0,(0,.001normaldeviate)) ;
%   gdraw p0 ;
%   gdraw p1 plot plotsymbol(1,.5) ;
%
%   numeric b[] ;
%   polynomial_fit(p1, b, 4, 1) ;
%   gdraw functionpath(p1,polynomial_function(b,4,x)) ;
%
%   numeric c[] ;
%   linear_fit(p1, c, 1) ;
%   gdraw functionpath(p1,linear_function(c,x)) dashed evenly ;

% a polynomial function :
%
% y = a0 + a1 * x + a2 * x^2 + ... + a[n] * x^n

vardef polynomial_function (suffix $) (expr n, x) =
    (for j=0 upto n : + $[j]*(x**j) endfor) % no ;
enddef ;

% find the determinant of a (n+1)*(n+1) matrix ; indices run from 0 to n

vardef det (suffix $) (expr n) =
    hide(
        numeric determinant ; determinant := 1 ;
        save jj ; numeric jj ;
        for k=0 upto n :
            if $[k][k]=0 :
                jj := -1 ;
                for j=0 upto n :
                    if $[k][j]<>0 :
                        jj := j ;
                        exitif true ;
                    fi
                endfor
                if jj<0 :
                    determinant := 0 ;
                    exitif true ;
                fi
                for j=k upto n : % interchange the columns
                    temp := $[j][jj] ;
                    $[j][jj] := $[j][k] ;
                    $[j][k] := temp ;
                endfor
                determinant = -determinant ;
            fi
            exitif determinant=0 ;
            determinant := determinant * $[k][k] ;
            if k<n : % subtract row k from lower rows to get a diagonal matrix
                for j=k+1 upto n :
                    for i=k+1 upto n :
                        $[j][i] := $[j][i]-$[j][k]*$[k][i]/$[k][k] ;
                    endfor
                endfor
            fi
        endfor ;
    )
    determinant % no ;
enddef ;

numeric fit_chi_squared ;

% least-squares fit of a polynomial $ of order n to a path p (unweighted)
%
% reference : P. R. Bevington, "Data Reduction and Error Analysis for the Physical
% Sciences", McGraw-Hill, New York 1969.

vardef polynomial_fit (suffix p, $) (expr n) (text t) =
    if not path p :
        graph_error(p, "Cannot fit--not a path") ;
    elseif length p < n :
        graph_error(p, "Cannot fit--not enough points") ;
    else :
        fit_chi_squared := 0 ;
        % calculate sums of the data
        save sumx, sumy ; numeric sumx[], sumy[] ;
        save w ; numeric w ;
        for i=0 upto 2n :
            sumx[i] := 0 ;
        endfor
        for i=0 upto n :
            sumy[i] := 0 ;
        endfor
        for i=0 upto length p :
            clearxy ; z = point i of p ;
            w := 1 ; % weight
            if known t :
                if  numeric t :
                    w := 1 if t<>0 : /(abs t) fi ;
                elseif pair t :
                    if t<>origin :
                        w := 1/(abs t) ;
                    fi
                elseif path t :
                    if length t>= i:
                        if point i of t<>origin :
                            w := 1/(abs point i of t) ;
                        fi
                    else :
                        w := 0 ;
                    fi ;
                fi
            fi
            x1 := w ;
            for j=0 upto 2n :
                sumx[j] := sumx[j] + x1 ;
                x1 := x1 * x ;
            endfor
            y1 := y * w ;
            for j=0 upto n :
               sumy[j] := sumy[j] + y1 ;
               y1 := y1 * x ;
            endfor
            fit_chi_squared := fit_chi_squared + y*y*w ;
        endfor
        % construct matrices and calculate the polynomial coefficients
        save m ; numeric m[][] ;
        for j=0 upto n :
            for k=0 upto n :
                m[j][k] := sumx[j+k] ;
            endfor
        endfor
        save delta ; numeric delta ;
        delta := det(m,n) ; % this destroys the matrix m[][], which is OK
        if delta = 0 :
            fit_chi_squared := 0 ;
            for j=0 upto n :
                $[j] := 0 ;
            endfor
        else :
            for i=0 upto n :
                for j=0 upto n :
                    for k=0 upto n :
                        m[j][k] := sumx[j+k] ;
                    endfor
                    m[j][i] := sumy[j] ;
                endfor
                $[i] := det(m,n) / delta ; % matrix m[][] gets destroyed...
            endfor
            for j=0 upto n :
                fit_chi_squared := fit_chi_squared - 2sumy[j]*$[j] ;
                for k=0 upto n :
                    fit_chi_squared := fit_chi_squared + $[j]*$[k]*sumx[j+k] ;
                endfor
            endfor
            % normalize by the number of degrees of freedom
            fit_chi_squared := fit_chi_squared / (length(p) - n) ; % length(p)+1-(n+1)
        fi
    fi
enddef ;

% y = a0 + a1 * x
%
% of course a line is just a polynomial of order 1

vardef linear_function (suffix $) (expr x) = polynomial_function($,1,x)   enddef ;
vardef linear_fit   (suffix p, $) (text t) = polynomial_fit(p, $, 1, t) ; enddef ;

% and a constant is polynomial of order 0

vardef constant_function (suffix $) (expr x) = polynomial_function($,0,x)   enddef ;
vardef constant_fit   (suffix p, $) (text t) = polynomial_fit(p, $, 0, t) ; enddef ;

% y = a1 * exp(a0*x)
%
% exp and ln defined in metafun

vardef exponential_function (suffix $) (expr x) = $1*exp($0*x) enddef ;

% since we take a log, this only works for positive ordinates

vardef exponential_fit (suffix p, $) (text t) =
    save a ; numeric a[] ;
    save q ; path q[] ; % fit to the log of the ordinate
    for i=0 upto length p :
        clearxy ; z = point i of p ;
        if y>0 :
            augment.q0(x,ln(y)) ;
            augment.q1(
                if known t :
                    if numeric t : (0,ln(t))
                    elseif pair t : (xpart t,ln(ypart t))
                    elseif path t :
                        if length t>=i :
                            hide(z1 = point i of t;)
                            (x1,ln(y1))
                        else :
                            origin
                        fi
                    fi
                else :
                    (0,1)
                fi ) ;
        fi
    endfor
    linear_fit(q0,a,q1) ;
    save e ; e := exp(sqrt(fit_chi_squared)) ;
    fit_chi_squared := e * e ;
    $0 := a1 ;
    $1 := exp(a0) ;
enddef ;

% y = a1 * x**a0

vardef power_law_function (suffix $) (expr x) = $1*(x**$0) enddef ;

% since we take logs, this only works for positive abscissae and ordinates

vardef power_law_fit (suffix p, $) (text t) =
    save a ; numeric a[] ;
    save q ; path q[] ; % fit to the logs of the abscissae and ordinates
    for i=0 upto length p :
        clearxy ; z = point i of p ;
        if (x>0) and (y>0) :
            augment.q0(ln(x),ln(y)) ;
            augment.q1(
                if known t :
                    if numeric t : (0,ln(t))
                    elseif pair t : (ln(xpart t),ln(ypart t))
                    elseif path t :
                        if length t>=i :
                            hide(z1 = point i of t)
                            (ln(x1),ln(y1))
                        else :
                            origin
                        fi
                    fi
                else :
                    (0,1)
                fi ) ;
        fi
    endfor
    linear_fit(q0,a,q1) ;
    save e ; e := exp(sqrt(fit_chi_squared)) ;
    fit_chi_squared := e * e ;
    $0 := a1 ;
    $1 := exp(a0) ;
enddef ;

% gaussian : y = a2 * exp(-ln(2)*((x-a0)/a1)^2)
%
% a1 is the hwhm ; sigma := a1/sqrt(2ln(2)) or a1/1.17741

newinternal lntwo ; lntwo := ln(2) ; % brrr, why not inline it

vardef gaussian_function (suffix $) (expr x) =
    if $1 = 0 :
        if x = $0 : $2 else : 0 fi
    else :
        $2 * exp(-lntwo*(((x-$0)/$1)**2))
    fi
    if known $3 :
        + $3
    fi
enddef ;

% since we take a log, this only works for positive ordinates

vardef gaussian_fit (suffix p, $) (text t) =
    save a ; numeric a[] ;
    save q ; path q[] ; % fit to the log of the ordinate
    for i=0 upto length p :
        clearxy ; z = point i of p ;
        if y>0 :
            augment.q0(x,ln(y)) ;
            augment.q1(
                if known t :
                    if numeric t : (0,ln(t))
                    elseif pair t : (xpart t,ln(ypart t))
                    elseif path t :
                        if length t>=i :
                            hide(z1 = point i of t)
                            (x1,ln(y1))
                        else :
                            origin
                        fi
                    fi
                else :
                    (0,1)
                fi ) ;
        fi
    endfor
    polynomial_fit(q0,a,2,q1) ;
    save e ; e := exp(sqrt(fit_chi_squared)) ;
    fit_chi_squared := e * e ;
    $1 := sqrt(-lntwo/a2) ;
    $0 := -.5a1/a2 ;
    $2 := exp(a0-.25*a1*a1/a2) ;
    $3 := 0 ; % polynomial_fit will NOT work with a non-zero background!
enddef ;

% lorentzian: y = a2 / (1 + ((x - a0)/a1)^2)

vardef lorentzian_function (suffix $) (expr x) =
    if $1 = 0 :
        if x = $0 : $2 else : 0 fi
    else :
        $2 / (1 + ((x - $0)/$1)**2)
    fi
    if known $3 :
        + $3
    fi
enddef ;

vardef lorentzian_fit (suffix p, $) (text t) =
    save a ; numeric a[] ;
    save q ; path q ; % fit to the inverse of the ordinate
    for i=0 upto length p :
        if ypart(point i of p)<>0 :
            augment.q(xpart(point i of p), 1/ypart(point i of p)) ;
        fi
    endfor
    polynomial_fit(q,a,2,if t <> 0 : 1/(t) else : 0 fi) ;
    fit_chi_squared := 1/fit_chi_squared ;
    $0 := -.5a1/a2 ;
    $2 := 1/(a0-.25a1*a1/a2) ;
    $1 := sqrt((a0-.25a1*a1/a2)/a2) ;
    $3 := 0 ; % polynomial_fit will NOT work with a non-zero background!
enddef ;