
The StatRep System for Reproducible Research

Tim Arnold and Warren F. Kuhfeld
SAS Institute Inc.

September 15, 2015

Contents

I User’s Guide 3

1 Synopsis 4

2 Introduction 4
2.1 Requirements for the StatRep Package 6
2.2 Package Usage . 6

3 Getting Started 6

4 Syntax 9
4.1 Code Environments . 10
4.2 Outputs . 13

5 Examples 17
5.1 Using the Datastep Environment . 17
5.2 Using the Sascode Environment . 19
5.3 Using the Sascode Environment with Line Commands 20
5.4 Selecting ODS Objects by Default 21
5.5 Specifying and Capturing ODS Objects by Name 22

II Reference Manual 26

6 Overview 27

7 Customizing StatRep 27

8 About the Program Preamble 29

1

9 Two Methods of Writing 31

10 StatRep SAS Macros 34
10.1 The %output and %endoutput Macros 35
10.2 The %write Macro . 35
10.3 The %startlist and %endlist Macros 36
10.4 The %startlog and %endlog Macros 36
10.5 Macro Variable Defaults . 37

11 ODS Object Selection 38
11.1 Page Breaks . 39

12 ODS Graphics 40
12.1 ODS Graphics and GRSEG Graphics 40

13 Advanced Examples 41
13.1 Capturing PRINT Output . 41
13.2 Capturing Large Tables . 41
13.3 Capturing Log Output . 45
13.4 Capturing Output with Interactive Procedures 48
13.5 Capturing and Displaying Numerical Results in Text 50

III Appendix 52

A Installation and Requirements 53
A.1 Step 1: Install the StatRep SAS Macros 53
A.2 Step 2: Install the StatRep LaTeX Package 53
A.3 Step 3: Tell the StatRep Package the Location of the StatRep SAS

Macros . 54

B The longfigure Package 55
B.1 Example . 57

C The ODS StatRep LaTeX Tagset 57
C.1 How It Works . 58
C.2 Customization . 59
C.3 Caution . 59
C.4 Style Examples . 60

D StatRep with SAS Studio or SAS University Edition 62
D.1 SAS Studio Folders . 63
D.2 SAS University Edition: Creating a Shared Folder 63
D.3 The Bridge Between LaTeX and SAS 66

Index 68

2

Part I

User’s Guide

3

1 Synopsis

The StatRep system consists of a LATEX package and a suite of SAS macros that
support SAS users who want to create documents with reproducible results.

The LATEX package provides two environments and two tags that work together to
display your SAS code and results and to generate the SAS program that produces
those results. The two environments (Datastep and Sascode) display SAS code.
The two tags (\Listing and \Graphic) display SAS output.

The generated SAS program includes calls to the StatRep macros that use the SAS
Output Delivery System (ODS) document to capture the output as external files. These
SAS macros are included in the package file statrep_macros.sas.

The StatRep package is available at http://support.sas.com/StatRepPackage

By default, StatRep displays SAS output tables as generated by the ODS Listing
destination; that is, the output tables are displayed as plain text. However, you can
specify that StatRep display LATEX outputs, generated by SAS, instead (see appendix
C for details).

You can use StatRep with a standalone SAS installation on your PC, or you can use
it in conjunction with SAS Studio and SAS University Edition (see appendix D for
details).

Bundled with the StatRep package is the longfigure package for multipage figures.
You can use the lonfigure package in other LATEX documents.

The StatRep system was designed to be flexible enough to support serious publishing
systems. It can handle many different situations and it is very customizable. This
document covers all aspects of StatRep; however, for most users, the User’s Guide
portion will suffice. For those who need more advanced techniques and customization,
please see the Reference Manual.

2 Introduction

At the end of a research project, one of the most difficult tasks remains: documen-
tation. The task is especially difficult with computational research because you must
ensure that the displayed program code works as expected and exactly produces the
displayed output.

The StatRep package, a single-source document system, is an open-source software
project that you can use for your own research documentation to ensure that the results
you display can easily be reproduced by your readers. The StatRep package is based
on the LATEX typesetting system. You write your paper using both the usual LATEX
markup and the customizations and SAS macros that this package provides. The
system reads the code and markup from the single source (your document) and creates
a SAS program. This automatically generated SAS program produces the results that
are displayed in your document.

4

http://support.sas.com/StatRepPackage

Comparable projects such as Sweave (Leisch 2002) and SASweave (Lenth 2007) ad-
dress the problem of reproducibility through the use of a special intermediate lan-
guage. Although similar in spirit to those systems, StatRep differs in that it is a
normal LATEX package; no special steps are needed to create the LATEX file or the SAS
program. In addition, StatRep provides both a complete, customizable system for au-
tomatic handling of multiple outputs and page breaking and an easy-to-use, flexible
method for output selection.

When you use the StatRep LATEX package, you follow a four-step process to create an
executable document that enables you to create reproducible research results:

1. Create your LATEX source file so that it contains your text, data, and SAS code.

2. Compile the document with pdfLATEX. You can use a LaTeX-aware editor such
as TEXworks, or you can use the command-line command pdflatex. This step
generates the SAS program that is needed to produce the results. If the name
of your document is myarticle.tex, the name of the generated SAS program is
myarticle_SR.sas by default.

3. Execute the SAS program to capture your output.

During execution of the SAS program, for each code block in your document,
SAS creates a SAS Output Delivery System (ODS) document that contains the
resulting output. For more information about ODS documents, see the SAS
Output Delivery System User’s Guide. For each output request (the included
\Listing and \Graphic tags) in your document, SAS replays the specified
output objects to external files. All of your requested output is generated and
captured when you execute the generated SAS program.

4. Recompile the document with pdfLaTeX. This step compiles your document
to PDF, this time including the SAS results that are generated in the preceding
step.

In some cases listing outputs may not be framed properly after this step. If
your listing outputs are not framed properly, repeat this step so that LaTeX can
remeasure the listing outputs.

When you need to make a change in your data or SAS code, you make the change
in one place (the LATEX source file) and repeat steps 2 through 4. Your changes are
automatically displayed in your code and in your results. You perform the steps only
as needed—when you change your data or code.

You can share your LATEX source with colleagues and be sure that your results are
reproducible. Any SAS user can reproduce your analysis with your LATEX document
and the supplemental files that are described in this manual.

5

2.1 Requirements for the StatRep Package

To use the StatRep package, you need SAS 9.2 or later, the LATEX typesetting sys-
tem (the pdfLATEX typesetting engine must be version 1.30 or later), and the StatRep
package itself.

For complete step-by-step instructions for installation, see appendix A.

2.2 Package Usage

To use the StatRep package, include it in your document preamble after you declare
the documentclass. Figure 1 displays an example of how you can use the StatRep
package.

\documentclass{book}
\usepackage[figname=output,resetby=chapter]{statrep}

Figure 1: Example of Using the StatRep Package

The StatRep package supports the following options:

• color specifies color support for SAS output tables. This option is only used
in conjunction with the ODS LaTeX tagset (see appendix C).

• generate specifies whether a SAS program is generated at compile time. It
can have a value of true or false; the default is true.

• figname= specifies the name of a LATEX counter that is used for numbering
outputs. The default is figure. If you specify a value for the figname option
for which no counter exists, a counter is created.

• resetby= specifies that the counter for output numbering be reset with each
change in the specified counter value. For example, if resetby=chapter, all
output numbering is reset when the chapter value changes.

The options figname= and resetby= are not used directly by the StatRep package
but are passed to the longfigure package, which is provided with the StatRep
package. The longfigure package supports display and page breaking within a
stream of outputs, and it can be used independently of the StatRep package. See
chapterlongfigure for more information.

3 Getting Started

This section provides a simple example of how you can use the StatRep package to
produce a document with reproducible results. You can follow along with the actual

6

code: extract this that contains the code in this section if your PDF
viewer supports file annotations.

Two code environments (Datastep, shown in Figure 2, and Sascode, shown in
Figure 3) and two output tags (\Listing and \Graphic, shown in Figure 4) are
used to generate a SAS program that produces the necessary output files.

The code from the Datastep environment is passed unchanged to the generated SAS
program.

\begin{Datastep}
proc format;

value $sex 'F' = 'Female' 'M' = 'Male';
data one;

set sashelp.class;
format sex $sex.;

run;
\end{Datastep}

Figure 2: Example of Datastep Environment

The code in the Sascode environment is parsed by the StatRep package before it is
written to the generated SAS program.

\begin{Sascode}[store=class]
proc reg;

model weight = height age;
run;
\end{Sascode}

Figure 3: Example of Sascode Environment

The \Listing and \Graphic tags convey information to LATEX and to SAS. The
tags specify the names of the output files to insert into the document and the captions
for the output. Additionally, the tags specify the names of the output files to create
and they can specify which ODS objects to capture. In this example, no objects are
specified so all objects are captured.

7

\documentclass{article}
\usepackage{statrep}
\begin{document}

This document is named \texttt{example.tex}.
It contains the complete \textit{Getting Started}
example from the \textit{StatRep User's Guide}.
You can generate the final PDF document \texttt{example.pdf} as follows:

\begin{description}
\item[Generate the SAS program]\mbox{}\newline
Compile this document with \texttt{pdflatex}.
The \texttt{StatRep} package automatically generates a SAS program from
the document source. The program is named
\texttt{example_SR.sas} and it is created in the current directory.

\item[Capture the SAS outputs]\mbox{}\newline
Run the SAS program \texttt{example_SR.sas}.
The SAS working directory must be the directory that contains this document.

\item[Create the final PDF]\mbox{}\newline
Compile this document with \texttt{pdflatex} once more. The outputs that SAS generated
in the preceding step are now included in the final PDF \texttt{example.pdf}.
\end{description}

The code in the \texttt{Datastep} environment is written
unchanged to the generated SAS program.

\begin{Datastep}
proc format;
 value $sex 'F' = 'Female' 'M' = 'Male';
data one;
 set sashelp.class;
 format sex $sex.;
run;
\end{Datastep}

 The code in the \texttt{Sascode} environment is parsed before it is
 written to the generated SAS program. For example, lines that begin with the string
 \texttt{\%*;} are written to the SAS program and are not displayed in the
 final document. The other lines in this example are written to the program
 and are displayed in the final document.

 The first line of the following code block can be seen only
 in the \LaTeX\ source file and in the generated SAS program.
 The line insures that ODS Graphics are enabled.

\begin{Sascode}[store=class]
%*; ods graphics on;
proc reg;
 model weight = height age;
run;
\end{Sascode}

 The \texttt{Listing} and \texttt{Graphic} tags convey information to
 \LaTeX\ and to SAS. The tags specify the names of the output files to
 insert into the document and the captions for the output.
 Additionally, they specify the names of the output files to create
 and which ODS objects to capture.

\Listing[store=class,
 caption={Regression Analysis}]{rega}

\Graphic[store=class,
 caption={Graphs for Regression Analysis}]{regb}

In this short example only the defaults are used. That is, all output
objects are selected and displayed.

\end{document}

\Listing[store=class,
caption={Regression Analysis}]{rega}

\Graphic[store=class, scale=0.9,
caption={Graphs for Regression Analysis}]{regb}

Figure 4: Example of Listing and Graphic Tags

Figure 5 shows the SAS code that is generated from the preceding LATEX source when
you compile the document.

generated from Datastep Block

proc format;
value $sex 'F' = 'Female' 'M' = 'Male';

data one;
set sashelp.class;
format sex $sex.;

run;

generated from Sascode Block

%output(class)
proc reg;

model weight = height age;
run;
%endoutput(class)

generated from Listing & Graphic Tags

%write(rega,store=class,type=listing)

%write(regb,store=class,type=graphic)

Figure 5: Generated SAS Code

When you generate the SAS program by compiling your LATEX document, the lines
in the Datastep environment are passed unchanged to the program and the lines
in the Sascode environment are wrapped between two SAS macros (%output and
%endoutput), whose definitions accompany this package (statrep_macros.sas).
The macros and their options are discussed in detail in section 10.

8

The \Listing tag results in a call to the %write macro that selects all notes and
tables from the ODS document. The \Graphic tag results in a call to the %write
macro that selects all graphs from the ODS document.

When you execute the generated SAS program that is displayed in Figure 5, the SAS
results created in the Sascode block are contained in the ODS document class. The
%write macro writes the requested results from the ODS document to the specified
external files.

When you compile your LATEX document again, the \Listing and \Graphic tags
insert the requested SAS results, handling page breaks automatically.

The first listing in the example document is shown in Figure 6.

Figure 6: Example listing output

By default, StatRep generates listing output from the SAS ODS Listing destination.
The preceding figure provides an example of how the SAS output is displayed in your
LaTeX document.

4 Syntax

The StatRep package provides two environments and two tags that work together to
display your SAS code and results and generate the SAS program that produces those

9

results.

The environments:

• The Datastep environment contains SAS code blocks that produce no output.
Its purpose is to read in data.

• The Sascode environment contains SAS code that generates output to be cap-
tured. It supports line-based commands to identify code lines that should only
be displayed, only passed to the generated program, or both displayed and
passed to the generated program.

The tags:

• The \Listing tag provides information to the generated program about which
tabular SAS output should be captured. It also provides information to LATEX
about how that output should be displayed.

• The \Graphic tag provides information to the generated program about which
graphical SAS output should be captured. It also provides information to LATEX
about how that output should be displayed.

The environments and tags are described in detail in the following sections.

4.1 Code Environments

Datastep Environment

The purpose of the Datastep environment is to read in data. It produces no SAS
results.

The Datastep contents are passed unchanged to the generated program. The Datastep
block is indented by three spaces in the PDF file. You can adjust the amount that the
block is indented; see section 7 for details. The block indent is provided automatically
so that your data and program lines can begin in the first column in your LATEX source.

Because you begin the Datastep data lines in the first column, formatted or column
input statements will work correctly when pasted into a SAS session.

Although the purpose of the Datastep environment is to read in data, it can contain
any SAS code that does not generate output to be captured. Additional statements
typically include TITLE and OPTIONS statements and PROC FORMAT steps. See
Figure 7 on page 18 for an example.

Table 1 summarizes the Datastep environment options.

10

Table 1: Commonly Used Datastep Environment Options

Option Action
By default, all lines are displayed and written to the program.

program Specifies that all lines in the environment be written to the
generated program only (that is, no lines are displayed). This option
is useful when you need to produce a data set that is not central to
the topic being discussed and does not need to be displayed.

display Specifies that all lines in the environment be displayed only (that is,
no lines are written to the program). This option is useful when you
need to show code fragments that will not run as is or example code
that is not needed for later output generation. A Datastep
environment that specifies the display option is similar to a plain
verbatim environment except that it is automatically indented
when displayed.

first=n Specifies that the first n lines in the environment be displayed. The
option affects only the displayed code block. This option is useful
when you have many data lines that do not need to be displayed,
but that must be available to the program. After the nth line is
displayed, the following text line is written in the displayed code
block:
... more data lines ...
You can specify different text to be used; see section 7 for details.

last=m Specifies that the last m lines in the environment be displayed. The
option affects only the displayed code block. This option is used in
conjunction with the first= option to show the ending lines of the
Datastep environment. Without the first= option, the last=
option has no effect.

fontsize= Specifies the LATEX font size used to display the code block. For
exampe, fontsize=small or fontsize=footnotesize.

See the section Using the Datastep Environment for an example.

Sascode Environment

The purpose of the Sascode environment is to generate output. In addition to the
environment options, it supports line commands that enable you to specify certain
lines as display-only or program-only.

The Sascode environment is parsed for line commands, and the appropriate lines are
passed to the program and displayed. The displayed code block is indented by three
spaces. You can adjust the amount the block should be indented; see section 7 for
details. The block indent is provided automatically so that your program lines can
begin in the first column in your LATEX source.

11

Because all line commands are valid SAS statements, you can copy Sascode blocks
and paste them directly into a SAS session.

Table 2 summarizes the Sascode environment options.

Table 2: Commonly Used Sascode Environment Options

Option Action
By default, all lines are displayed and written to the program.

store= Specifies the name of the ODS document to contain the SAS output.

program Specifies that all lines in the environment be written to the program
only (that is, no lines are displayed). This option is useful when
you need to execute code that is not central to the topic being
discussed and need not be displayed.

display Specifies that all lines in the environment be displayed only (that is,
no lines are written to the program). This option is useful when you
need to show example code fragments that will not run as is or that
are not needed for later output generation. A Sascode
environment that specifies the display option is similar to a plain
verbatim environment except that it is automatically indented
when displayed.

fontsize= specifies the LATEX font size used to display the code block (for
example, fontsize=small or fontsize=footnotesize).

The Sascode environment also supports a finer degree of control with line-based
commands to identify lines that should be only displayed or only passed to the gener-
ated program.

Table 3 summarizes the line commands you can use in the Sascode environment.

Table 3: Sascode Line Commands

Option Action
%* program n ; The next n lines are only written to the program and not

displayed.

%* display n ; The next n lines are only displayed and not written to the
program.

%*; code line The current line is only written to the program and not
displayed.

The Sascode environment is parsed for line commands before being written to the
generated program file.

12

See the sections Using the Sascode Environment and Using the Sascode Environment
with Line Commands for examples.

By using a combination of environment options and line commands, you have com-
plete control over the displayed code and the generated program contents.

4.2 Outputs

The \Listing and \Graphic tags specify the outputs to be displayed. The pur-
pose of the \Listing tag is to display tabular output and notes. The purpose of the
\Graphic tag is to display graphical output.

All figures are centered. If the figure width is narrower than the text block, the figure is
centered with respect to the text block. Otherwise, the figure is centered with respect
to the page.

The \Listing and \Graphic tags support a set of options and have one manda-
tory argument, which specifies the filename prefix for the output to be generated and
displayed. The prefix must be unique; otherwise the output from one example will
overwrite another.

Furthermore, the prefix must not end in a numeral so that the prefix name does not
interfere with SAS-generated output file names. When SAS generates a set of files
from one ODS selection, it follows a pattern: the first file that is generated is identical
to the filename, the next file that is generated has the same name with a “1” appended
to it, the next file has the same name with a “2” appended, and so on.

The options supported by the \Listing and \Graphic tags are used by the StatRep
LATEX package and by the StatRep SAS macros.

The following table lists all options. Subsequent tables provide descriptions for each
option and how it is used in LaTeX and in SAS.

13

Table 4: Master List of Output Tag Options

Option Name Used by Output Tag

caption= LaTeX Listing, Graphic
dest= LaTeX, SAS Listing
dpi= SAS Graphic
firstobj= SAS Listing, Graphic
fontsize= LaTeX Listing (ODS Listing destination)
height= SAS Graphic
lastobj= SAS Listing, Graphic
linesize= LaTeX, SAS Listing (ODS Listing destination)
objects= SAS Listing, Graphic
options= SAS Listing, Graphic
pagesize= SAS Listing
pattern= SAS Listing, Graphic
scale= LaTeX Graphic
store= LaTeX, SAS Listing, Graphic
style= SAS Listing (ODS LaTeX destination), Graphic
type= SAS Listing, Graphic
width= LaTeX, SAS Graphic

Options Used by the StatRep LATEX Package

The following options are used by the StatRep LATEX package.

caption= specifies the caption to use for an output.

dest= specifies the ODS destination to use for generating the output. The default
value is listing. The other possible value is latex, which specifies that
Listing output be generated and displayed as LaTeX tables.

fontsize= specifies the LATEX font size to use to display an output (for example,
fontsize=small or fontsize=footnotesize).

linesize= specifies the line size used to generate and display Listing output. By
default, the value is 80 columns. This specification lasts for the duration of this
step. The current line size is restored at the end. Typical values are 80, 96, or
120.

For extremely wide output tables, you can use the linesize and fontsize
options together (for example, linesize=120 and fontsize=scriptsize).
The linesize option affects how SAS captures the table. The fontsize op-
tion specifies how LATEX displays the table.

scale= specifies a factor by which to scale a Graphic image. For example, specify
scale=0.5 to scale the image to half its original size, or specify scale=2 to
scale it to double its original size.

14

store= specifies the name of the ODS document that is created in a Sascode envi-
ronment. When you specify the store= option, the StatRep package adds the
appropriate SAS macro calls to the generated program.

width= specifies the width to generate and display Graphic output The default is
6.4 inches, which is the standard width for ODS graphs.

Options Passed to the StatRep SAS Macros

The store=, linesize=, and width= options described in the previous section are
passed to the StatRep SAS macros. In addition, the following options are passed to
the StatRep SAS macros:

dest= specifies the ODS destination to use for generating the output. The default
value is listing. The other possible value is latex, which specifies that
Listing output be generated and displayed as LaTeX tables.

dpi= specifies dots per inch (DPI) to use in generating graphs. The default is dpi=300.
A typical alternative is dpi=100.

firstobj= specifies the first data object to capture in an output stream. All ob-
jects after and including the specified object are displayed, up to the final ob-
ject (or optionally up to the object specified in lastobj=). You can use
options=skipfirst to begin with the object after the one specified in firstobj=.
See section 11 for details.

height= specifies the height of graphs. The default is 0.75 times the width.

lastobj= specifies the last data object to capture in an output stream. All objects
starting with the first object (or optionally the object specified in firstobj=)
are displayed up to and including the specified object. You can use options=skiplast
to end with the object before the one specified in lastobj=.

linesize= specifies the line size used to generate and display Listing output. By
default, the value is 80 columns. This specification lasts for the duration of this
step. The current line size is restored at the end. Typical values are 80, 96, or
120.

objects= specifies a space-separated list of ODS objects to capture in an output
stream. The names that are used for selection come from the ODS document. If
you specify objects=, then you can also specify object breaking rules (where
page breaks can occur). See section 11 for details.

options= specifies binary options. Specify one value or a space-separated list of
values (for example, options=skipfirst skiplast). You can specify
the following values (the default is options=autopage):

15

autopage specifies that the first \Listing command or %writemacro start
a new output stream with titles, procedure titles, and so on. Page breaks
also occur at other places where the procedure explicitly sets a page break.
The autopage value is the default. See also the nopage and newpage
values.

graph specifies that only graphs be selected. You can alternatively specify
type=graph.

list specifies that the contents of the ODS document be listed in the SAS log.
This value does not run PROC DOCUMENT to replay the output.

newpage specifies that SAS force a new page for the first object.

nopage suppresses page breaks.

onebox groups all tables, notes, reports, and so on into a single piece of SAS
output. You cannot specify this option to group graphs. See section 11 for
more information about grouping.

skipfirst modifies the firstobj= option so that the first object in the list
is not selected. This enables you to select all objects after the one specified
in firstobj=.

skiplast modifies the lastobj= option so that the last object in the list is
not selected. This enables you to select all objects before the one specified
in lastobj=.

table selects all objects (tables, notes, reports, and so on) except graphs. You
can alternatively specify type=listing.

pagesize= specifies the page size. The default is the page size currently in effect.
This specification lasts for the duration of this step. The current page size is
restored at the end.

If you have not changed the page size, the default page size set by the StatRep
package is 500. This large page size is the default so that output is generated
with minimal new pages caused by page boundaries. For large tables, you can
specify a smaller page size to force more page breaks. See section 7 for informa-
tion about how to change the StatRep default. See section 13.2 for information
about how to use the pagesize= option with large tables.

pattern= provides an optional and additional selection criterion. Specify part of
a path (for example, a group name). Only objects whose name includes the
specified value are selected.

store= specifies the name of the ODS document that is created in a Sascode envi-
ronment. When you specify the store= option, the StatRep package adds the
appropriate SAS macro calls to the generated program.

style= specifies the ODS style to use in generating output. The default is style=Statistical.
You can change the default style (for example, to HTMLBlue) by inserting the
following line into a Sascode or Datastep environment:

16

*; %let defaultstyle=HTMLBlue;

This option affects ODS graphs only when used in a \Graphic tag. You
can specify this option in the %output macro to set the style for GRSEG
graphs (graphs that are produced by legacy SAS/GRAPH procedures such as
the GPLOT, GMAP, and GCHART procedures). GRSEG graphs are stored in
catalogs and cannot be changed after they are generated. In contrast, style, DPI,
and so on for ODS graphis can be changed after the graph is initially created.
See section 12.1 for more information.

type=listing|graph specifies that only listings or only graphs be selected. You
can alternatively specify options=table or options=graph.

width= specifies the width to generate and display Graphic output The default is
6.4 inches, which is the standard width for ODS graphs.

5 Examples

5.1 Using the Datastep Environment

Figure 7 displays an example Datastep environment. The left margin for the envi-
ronment is in the first column, which is where the data lines themselves begin. This
ensures that the variables will be read correctly.

17

\begin{Datastep}[first=9, last=3]
title 'Probit Analysis, Newspaper Survey';
proc format;

value subscrib 1 = 'accept' 0 = 'reject';
run;
data news;

input sex $ 1-6 age 12-13 subs 18 ;
datalines;

Female 35 0
Male 45 1
Female 51 0
Male 54 1
Female 35 0
Female 48 0
Male 46 1
Female 46 1
Male 38 1
Male 49 1
Male 50 1
Female 47 0
Female 39 0
Female 45 0
Male 39 1
Female 39 0
Female 52 1
Male 58 1
Female 32 0
Female 35 0
;
\end{Datastep}

Figure 7: Datastep Environment with Options

In Figure 7, the options to the Datastep environment specify that only a portion of
the code block be displayed. All lines in the environment are written to the generated
program.

The option first=9 specifies that the displayed code block contain the TITLE, the
PROC FORMAT code, and the DATA step block through the second line of data (the
first nine input lines). After these lines, the following text is displayed:

... more data lines ...

The option last=3 specifies that the displayed code block will contain the last three
lines of the environment.

Figure 8 shows the display resulting from the preceding Datastep environment.

18

title 'Probit Analysis, Newspaper Survey';
proc format;

value subscrib 1 = 'accept' 0 = 'reject';
run;
data news;

input sex $ 1-6 age 12-13 subs 18 ;
datalines;

Female 35 0
Male 45 1

... more data lines ...

Female 32 0
Female 35 0
;

Figure 8: Displayed Datastep Environment with Options

5.2 Using the Sascode Environment

Figure 9 displays an example Sascode environment.

\begin{Sascode}[store=mdoc]
proc reg data=h38 plots=predictions(X=Year);

model Population = Year Yearsq;
quit;
\end{Sascode}

Figure 9: Sascode Block

The code displayed in Figure 9 contains SAS code that performs a regression analysis.
Because no line commands are given, the code block is written as-is to the generated
SAS program, as shown in Figure 10.

%output(mdoc);
proc reg data=h38 plots=predictions(X=Year);

model Population = Year Yearsq;
quit;
%endoutput(mdoc);

Figure 10: Generated Code from Sascode Block

19

5.3 Using the Sascode Environment with Line Commands

Figure 11 displays an example Sascode environment that contains line commands.

\begin{Sascode}[store=mdoc]

* program 2;
libname mylib 'c:/mylibs';
filename in1 'h38.ssp';

* display 2;
libname mylib 'path to your library directory';
filename in1 'path to data directory/h38.ssp';
proc reg data=mylib.h38 plots=predictions(X=Year);

model Population = Year Yearsq;
quit;
\end{Sascode}

Figure 11: Sascode Block with Line Commands

The code displayed in Figure 11 contains two line commands that delineate two
specifications for the libname and filename SAS statements. The line command
%* program 2; specifies that the location-specific definitions be passed to the gen-
erated program, as shown in Figure 12.

output(mdoc);
libname mylib 'c:/mylibs';
filename in1 'h38.ssp';
proc reg data=mylib.h38 plots=predictions(X=Year);

model Population = Year Yearsq;
quit;
endoutput(mdoc);

Figure 12: Generated Code from Sascode Block with Line Commands

The line command %* display 2; in Figure 11 specifies that the generic version
of the libname and filename statements be displayed, as shown in Figure 13.

20

libname mylib 'path to your library directory';
filename in1 'path to data directory/h38.ssp';
proc reg data=mylib.h38 plots=predictions(X=Year);

model Population = Year Yearsq;
quit;

Figure 13: Displayed Code from Sascode Block with Line Commands

5.4 Selecting ODS Objects by Default

When you use the \Graphic tag, all graph objects are automatically selected. When
you use the \Listing tag, all non-graph objects such as tables and notes are automat-
ically selected. When you use the %writemacro, you can specify the options=graph
option to select graphs or the options=table to select tables and notes.

The following statements select all of the tables for the \Listing display and all of
the graphs for the \Graphic display:

\begin{Sascode}[store=docgs1]
ods graphics on;
proc corresp data=PhD short;

var y1973-y1978;
id Science;

run;
\end{Sascode}

\Listing[store=docgs1,
caption={Inertia and Chi-Square Decomposition}]{crsi1a}

\Graphic[store=docgs1,
caption={Correspondence Analysis of Ph.D. Data}]{crsi1b}

Figure 14: Object Selection with the \Listing and \Graphic Tags

The log information tables display the selected objects for each block of output.

The first information table corresponds to the ODS selection that is produced by the
\Listing tag. All ODS objects of type ‘Table’ are selected (more precisely, all
objects that are not of type ‘Graph’). Each object is contained in its own selection
group, so a page break might occur between any of the tables.

21

Objects Type Status Group

Corresp.Inertias Table Selected 1
Corresp.Rows.RowCoors Table Selected 2
Corresp.Columns.ColCoors Table Selected 3
Corresp.Configuration.ConfigPlot Graph .

Figure 15: SAS Log Information Table from the Listing Tag

The second information table corresponds to the ODS selection that is produced by
the \Graphic tag. The single ODS object of type ‘Graph’ is selected.

Objects Type Status Group

Corresp.Inertias Table .
Corresp.Rows.RowCoors Table .
Corresp.Columns.ColCoors Table .
Corresp.Configuration.ConfigPlot Graph Selected 1

Figure 16: SAS Log Information Table from the Graphic Tag

5.5 Specifying and Capturing ODS Objects by Name

To capture particular ODS objects or ODS group output, you must specify the appro-
priate names in the \Listing tag, the \Graphic tag, or the %writemacro. The op-
tions that support specific ODS names are the pattern=, firstobj=, lastobj=,
or objects= options.

If an object appears more than once in a particular ODS document (which typically
means in one Sascode block), you must specify additional name levels to differenti-
ate the objects. The log information table displays the fully qualified ODS names; you
use the information from the log to specify the appropriate name for the ODS objects
to capture.

For example, if there are multiple residual panels, you must specify the additional
level to select a particular ODS object.

objects=residualplot

objects=residualplot\#2

Note: When you have a pound character (#) in a pattern or object name, you must
escape it in LATEX tags. The pound character is a special LATEX control character and

22

must be escaped with a backslash. In other words, specify Group\#2 instead of
Group#2 in a LATEX tag. Do not escape the # when you use the %write macro.

Comparisons are not case sensitive. For example, if you specify pattern=fit, the
following objects will be selected if they occur in the output stream:

Fit.Population.ANOVA
MODEL1.Fit.Population.ANOVA
Reg.MODEL1.Fit.Population.ANOVA
reg#1.model1#1.fit#1.population#1.anova#1
reg#1.model1.fit.population#1.anova#1
reg.model1.fit.population.anova

Typically1, you need only to specify the last level of an ODS name. For example, for
one model and one ANOVA table, all of the following specifications for the ANOVA
object are equivalent.

anova
ANOVA
ANOVA\#1
Fit.Population.ANOVA
MODEL1.Fit.Population.ANOVA
Population.ANOVA
Reg.MODEL1.Fit.Population.ANOVA
reg.model1.fit.population.anova
reg\#1.model1.fit.population\#1.anova\#1
reg\#1.model1\#1.fit\#1.population\#1.anova\#1

When you run the SAS program that is generated by the StatRep package, the SAS
log contains a table with information about each ODS object. For example, Figure
17 shows a Sascode environment that is parsed and written to the generated SAS
program when the LATEX document is compiled.

1When deciding on names to specify, be sure to consult the table of names from the ODS document
that appears in the SAS log. It contains the proper pattern of # characters. See Figure 18 for an example.

23

\begin{Sascode}[store=Ex31]
proc probit data=news;

class subs sex;
model subs=sex age / d=logistic itprint;

run;
\end{Sascode}

\Listing[store=Ex31,
objects=ClassLevels IterHistory ModelInfo

LastGrad LastHess ParameterEstimates,
caption={Logistic Regression of Subscription Status}]{prb31a}

Figure 17: Example of Capturing Listing Output

The \Listing tag results in a call to the %write macro in the automatically gener-
ated SAS program. When you execute the program, the %write macro generates the
log information table shown in Figure 18.

Objects Type Status Group

Probit.IterHistory Table Selected 1
Probit.ModelInfo Table Selected 2
Probit.NObs Table .
Probit.ClassLevels Table Selected 3
Probit.ParmInfo Table .
Probit.ResponseProfile Table .
Probit.Note Note .
Probit.LastGrad Table Selected 4
Probit.LastHess Table Selected 5
Probit.ConvergenceStatus Table .
Probit.Type3Analysis Table .
Probit.ParameterEstimates Table Selected 6

Figure 18: SAS Log Information Table

The table of information displays the fully qualified name for each generated ODS
object, its type, whether it is selected, and its selection group.

Page breaks can occur only between selection groups. You can control the grouping
as described in the section 11.1 on page 39. For example, if you specify LastGrad
LastHess as <LastGrad LastHess>, the two tables would be in the same group.

24

The order in which objects are created is determined by the order in which they are
generated, not the order in which they are specified in the objects= option.

25

Part II

Reference Manual

26

6 Overview

The preceding pages should provide the information to use the package in most scenar-
ios. For more in-depth descriptions and methods for customization, see the following
chapters.

Customizing StatRep describes several hooks for customizing the package and set-
ting system-wide defaults.

About the Program Preamble provides an overview of how the StatRep package
works with the SAS macros; a special file (the program preamble) provides a
method of communication between the two.

Two Methods of Writing describes how you can bypass the automatic code genera-
tion and use the StatRep SAS macros directly.

StatRep SAS Macros describe in detail each SAS macro in the StatRep package.
You can use these macros yourself for maximum flexibility in creating a custom
StatRep document.

ODS Object Selection describes how you can use options in the \Listing and
\Graphic tag to specify exactly what output you want to display.

ODS Graphics describes differences between ODS graphics and GRSEG graphics.

7 Customizing StatRep

You can modify the configuration file statrep.cfg to change the following settings
used by the StatRep package. See section 10.5 for more information about macro
variable defaults.

\SRcaptionfont specifies the font for the output captions. The default is \sffamily
(sans serif).

\SRcaptioncontinuedfont specifies the font for the continued name for out-
puts that break across pages. The default is \sffamily\itshape (sans serif,
italic).

\SRcontinuedname specifies the name that indicates that an output block is con-
tinued. The name is used when an output stream breaks across a page. The
default is continued.

\SRdefaultdests specifies the default ODS Destination for tabular outputs. The
default is listing. You can specify latex to produce SAS-generated LaTeX
tabular output. See appendix C for details.

27

\SRdpi specifies the default dots per inch (DPI) for SAS to use in generating graph-
ical output. The default is 300.

\SRgraphicdir specifies the name of the directory that contains the SAS generated
graphical output files. The default is png.

\SRgraphtype specifies the format of the SAS generated graphical output. You
can specify either png or pdf. The default is png.

\SRlatexdir specifies the name of the directory that contains the SAS generated
LaTeX tabular output. The default is tex. See appendix C for details.

\SRlatexstyle specifies the ODS style for SAS to use to generate LaTeX tab-
ular output. The default is statrep, a monochromatic style based on the
statistical ODS style. See appendix C for details.

\SRodsgraphopts specifies a string that is passed as ODS GRAPHICS statement
options. For a complete explanation of all available options, see the documenta-
tion of the ODS GRAPHICS statement in SAS Output Delivery System: User’s
Guide.

\SRintertext specifies the text to insert in Datastep environments that specify
the first= option. The default is ... more data lines ...

\SRlinesize specifies the default line size to use in generating tabular output and
centering it for display. The default is 80.

\SRlistingdir specifies the name of the directory that contains the SAS generated
listing (tabular) output files. The default is lst.

\SRmacropath specifies the path to the location of the SAS macros that are bundled
with the StatRep package. For example, if you installed the statrep_macros.sas
file to a directory named C:\mymacros, then define macro \SRmacropath
as follows:

\def\SRmacropath{c:/mymacros/statrep_macros.sas}

Use the forward slash in the definition as the directory name delimiter instead
of the backslash, which is a special character in LATEX. If you want to use a back-
slash character (\), you must insert it with the LATEX command, \@backslashchar.

The default value is the current path. That is, the default definition for the
\SRmacropath macro is the filename itself, statrep_macros.sas.

\SRmacroinclude specifies the line used in the generated SAS program to include
the SAS macros that are bundled with the StatRep package. The default is
%include \SRmacropath /nosource;

\SRpagesize specifies the default page size for SAS to use in generating tabular
output. The default is 500.

28

\SRparindent specifies the amount of space to indent Datastep and Sascode
environments. The argument is a dimension. The default is 3em and is mea-
sured according to the font currently in use.

\SRprogramline specifies the first lines to include in the generated SAS program
after the \SRmacroinclude line.

The following default value calls a macro (from statrep_macros.sas) that
removes the contents of the listing and graphic directories to ensure that the
generated graphs and listings from the SAS program are current. The directo-
ries are created with each SAS run that includes the macros themselves (via x
commands).

%hostdel;

\SRprogramname specifies the filename for the generated SAS program. The de-
fault is \jobname_SR.sas, where \jobname is usually the stem name of the
LATEX source file.

\SRstyle specifies the default ODS style for SAS to use to generate graphical out-
put. The default is Statistical.

\SRtempfilename specifies the name of a temporary file that is used as a scratch
file in the current working directory. The default is sr.tmp.

\SRverbfont specifies the font to use for code within Datastep and Sascode
blocks. The default is \ttfamily\bfseries (typewriter text, bold).

8 About the Program Preamble

The StatRep package automatically writes a preamble to the generated program and
a preamble file.

The preamble settings are split into two parts to support users who prefer to manually
write the calls to the StatRep macros and work interactively between the LATEX source
document and a SAS session. For this use, you can include the external preamble file
once in your SAS session and all the necessary settings are made for you.

If you do not manually write calls to the StatRep macros (you use the default, auto-
mated method), there is nothing you need to do—your generated program contains
the lines that specify your settings.

The preamble in the generated program includes the preamble file and deletes the
contents of the output directories (lst, tex, and png, by default) so that obsolete
files are not included in the document. Figure 19 shows an example of the preamble
lines that are written to the generated program.

29

/*
This file is auto-generated by the statrep package.
Do not edit this file or your changes will be lost.
Edit the LaTeX file instead.

See the statrep package documentation and the file
statrep.cfg for information on these settings.

*/

%include "report_SR_preamble.sas" /nosource;
/* Remove all output files. */
%hostdel;

/* Start program with a null title. */
title;

Figure 19: Generated SAS Program Preamble

The external preamble file sets defaults, includes the output-capture macros, and cre-
ates the output directories if they do not exist. You can customize the preamble; see
section 7 for details. Figure 20 shows the default file preamble.

30

/*
This file is auto-generated by the statrep package.
Do not edit this file or your changes will be lost.
Edit the LaTeX file instead.

See the statrep package documentation and the file
statrep.cfg for information on these settings.

*/

/* Set and invoke macro variable defaults. */
%let defaultlinesize=80;
%let defaultpagesize=500;
%let defaultdpi=300;
%let defaultstyle=statistical;
%let listingdir=lst;
%let graphicdir=png;
%let graphtype=png;
%let odsgraphopts=;
%let latexdir=tex;
%let latexstyle=statrep;
%let defaultdests=listing;

options nodate nonumber
ls=&defaultlinesize ps=&defaultpagesize
formchar='|----|+|---+=|-/\<>*';

ods graphics on;
/* Include SAS macro definitions. */
%include "statrep_macros.sas" /nosource;

Figure 20: Generated Preamble File

9 Two Methods of Writing

To maximize flexibility, the StatRep package provides two methods of writing code
in your LATEX document.

When you create your LATEX document, you can use either the automatic method de-
scribed in chapter 3 (in which the SAS macro calls are generated automatically) or
a manual method (in which you write the %output, %endoutput, and %write
macros yourself).

31

In the automatic method, each Sascode code block generates an %output macro
call at the beginning of the block and an %endoutput macro call at the end of the
block. Each \Listing and \Graphic tag generates the %write macro to replay
the selected output objects to external files.

In the manual method, you decide where and when to make the macro calls. It is only
in this respect that the method is manual: the StatRep package still generates your
SAS program and displays your code and results.

The StatRep package uses the SAS macro comment (%* comment ;) to provide
line commands within a Sascode block. Furthermore, any line of code that begins
with a null macro comment (%*;) is written to the SAS program and is not displayed.

You can use the manual method when you want to do one or more of the following:

• capture specialized or complicated output

• capture print output with SAS 9.2 (see the %startlist macro in section 10.3)

• capture output from the SAS log (see the %startlog macro in section 10.4)

• work interactively when writing (you can interactively develop or debug a cer-
tain section of your document by copying code from your LATEX document and
pasting it into a SAS session)

You can use either method, and you can mix the methods in a single document. The
manual method is provided for cases in which the automatic method is too inflexible.
By using the line commands in a Sascode environment, you are free to write your
program as you want, while retaining control of the code that is displayed in your final
PDF document.

Continuing with example shown in Figure 2 and Figure 3, you can write the code
yourself within your LATEX document as shown in Figure 21 and obtain the identical
code display and capture.

32

Datastep is identical

\begin{Datastep}
proc format;

value $sex 'F' = 'Female' 'M' = 'Male';
data one;

set sashelp.class;
format sex $sex.;

run;
\end{Datastep}

%output added manually

\begin{Sascode}

*; %output(class)
proc reg;

model weight = height age;
run;

%write macros added manually

*; %write(rega, type=listing)

*; %write(regb, type=graphic)
\end{Sascode}

Listing and Graphic tags only caption and insert output

\Listing[caption={Regression Analysis}]{rega}
\Graphic[caption={Graphs for Regression Analysis}]{regb}

Figure 21: Using the SAS Macros Manually

The Datastep environment in Figure 21 is identical to that shown in the Figure 2.
However, the Sascode environment makes an explicit call to the %output macro to
create the ODS document that contains all the results from the code block. Because
this line begins with the null SAS macro comment (%*;), the line is passed directly to
the generated SAS program and is not displayed.

The %endoutput macro is not necessary when you are processing only one ODS
document. It is implicitly specified by the first %write macro.

Next are two explicit calls to the %write macro, which specify the ODS objects to
capture and the ODS document that the objects should be taken from. Both %write
macros use the minimum number of options. The first %write macro selects all notes
and tables from the last ODS document created. The second %write macro selects all

33

graphs from the last ODS document created. Because the store= option is omitted
in both cases, output from the most recently created ODS document is displayed.

Finally, the \Listing and \Graphic tags request the outputs. In this method, you
do not place the options that are related to SAS in the the \Listing and \Graphic
tags. You need to specify only the caption and filename prefix.

To summarize, the Datastep environment is handled identically in either method,
the Sascode environment can optionally produce the %output and %endoutput
macros, and the \Listing and \Graphic tags can optionally produce the %write
macros.

10 StatRep SAS Macros

SAS programs created by the StatRep package run SAS macros to capture output.
The macros depend on the ODS document. The ODS document is a destination or
repository for the results (tables, notes, titles, and graphs) that come from SAS proce-
dures. Each procedure step is run only once, and the results are captured in an ODS
document. Then the parts of the ODS document are replayed using PROC DOCU-
MENT.

When StatRep encounters a Sascode environment, it generates a macro call to create
an ODS document from the environment. When StatRep encounters a \Listing or
\Graphic tag, it generates a macro call to replay output from that ODS document
into an external file.

For the output that is generated in each Sascode block, the SAS macros provide
you with a list of all of the objects in the ODS document and a table that displays
the objects selected for display. You can review this list in the SAS log. It is impor-
tant to check these lists to ensure that either all output is included somewhere or any
omissions are deliberate.

The following macros are defined:

• The %output and %endoutput macros open and close an ODS document,
respectively. When you use StatRep to automatically generate your program,
these macros are called at the beginning and end of a Sascode block, respec-
tively. You can manually call the macros at any time within a Sascode block
by prefixing the call with a null SAS macro comment (%*;).

• The %write macro writes ODS objects that are contained in an ODS document
to one or more external files. When you use StatRep to automatically generate
your program, this macro is called when a \Listing or \Graphic tag is
encountered. You can manually call the macro at any time within a Sascode
block by prefixing the call with a null SAS macro comment (%*;).

• The %startlist and %endlist macros capture printed content (for exam-
ple, a PROC PRINT or DATA step) to an external file. To use these macros, you

34

must manually call the macro within a Sascode block and prefix the call with
a null SAS macro comment (%*;).

• The %startlog and %endlog macros capture content from the SAS log to an
external file. To use these macros, you must manually call the macro within a
Sascode block and prefix the call with a null SAS macro comment (%*;).

10.1 The %output and %endoutput Macros

The Sascode environment writes the %output and %endoutput macros to the
generated program whenever the store= option is specified. However, you can call
the macros yourself by omitting the store= option in the Sascode environment and
call the macros within the Sascode environment. Each call must be prefixed with a
null SAS macro comment (%*;).

The %output macro supports two other options (style= and dpi=) that are used to
set parameters for GRSEG graphs. These options are not supported in the Sascode
environment options. If you want to change the style or DPI for GRSEG graphs, you
must call the %output and %endoutput macros manually.

The following options are supported by the %output macro:

store= specifies the name of the ODS document. This name is used in the store=
option in the \Listing and \Graphic tags or in the %write macro.

style= specifies the style used for GRSEG graphs. The default is HTMLBlue. See
section 12.1 for details.

dpi= specifies the dots per inch (DPI) setting used for GRSEG graphs. The default
is 300 DPI. See section 12.1 for details.

10.2 The %write Macro

The %writemacro supports the same key-value options as the \Listing and \Graphic
tags support. The StatRep package generates the %write macro in the SAS pro-
gram file whenever the store= option is specified in the output tag. However, you
can call the macros yourself by omitting the store= option in the \Listing or
\Graphic tag and call the macro within a Sascode environment. Each call must be
prefixed with a null SAS macro comment (%*;). See the section Options Passed to the
StatRep SAS Macros for more information about the options used in the \Listing
and \Graphic tags that are passed to the %write macro.

Note: If you use the macros interactively, be aware that these macros open and close
ODS destinations, enable and disable ODS Graphics, and change ODS options. Out-
put capture uses the LISTING destination, and when the %write macro finishes, only
the LISTING destination remains open. If you need other ODS destinations for your
work, you need to reset them when you are done with a section of output capture. For

35

example, if you are using the HTML destination in the SAS windowing environment,
then you need to close the LISTING destination and reopen the HTML destination
when you finish capturing output.

10.3 The %startlist and %endlist Macros

The %startlist and %endlist macros capture printed information from the ODS
listing destination. The macros are used when you create output with a procedure that
does not support ODS. They are also used when you use the DATA _NULL_ and PUT
ODS SAS statements to manually capture output.

These macros are not automatically generated by the StatRep package. You must call
them manually within a Sascode environment (with each call preceded by a null
SAS macro comment).

In SAS 9.2, PROC PRINT is not fully integrated into the ODS document, unless you
specify PROC PRINT with no options. If you specify PROC PRINT with options,
you must use the %startlist and %endlist macros to capture output.

If you use PROC PRINT in SAS 9.3 or later, you can use the %output and %write
macros as you would with any SAS procedure.

The %startlist macro has one mandatory argument, the filename prefix of the file
to contain the output. The argument is also used in the \Listing tag to insert the
output.

The %startlist macro supports the following options after the filename argument,
separated with a comma (,):

linesize= specifies the line size. The default is the line size currently in effect.
This specification lasts for the duration of this step. The current line size is re-
stored at the end. When you specify the linesize= option in the %startlist
macro, be sure to make the same specification in the \Listing tag you use to
insert the output.

pagesize= specifies the size of the output page. The default is the page size cur-
rently in effect. This specification lasts for the duration of this step. The current
page size is restored at the end. This option is useful for breaking up long list-
ings into smaller parts to allow for page breaks. If a listing output spans more
than one SAS page, the output is automatically split into parts and the page
breaks can occur only between parts of output. For more information about
capturing large outputs, see section 13.2.

10.4 The %startlog and %endlog Macros

The %startlog and %endlog macros capture SAS notes or error messages from
the SAS log. They also capture output from some SAS/IML functions that write to
the SAS log rather than using ODS.

36

These macros are not automatically generated by the StatRep package. To capture
content from the SAS log, you must call these macros manually within a Sascode
environment (with each call preceded by a null SAS macro comment).

The %startlog macro has one mandatory argument, the filename prefix of the file
to contain the output. The argument is also used in the \Listing tag to insert the
output.

The %endlog macro supports the following options, separated by a comma (,):

code= specifies whether program code in the SAS log is included. By default, code
is captured (code=1). Set code=0 to exclude code.

range= specifies a Boolean expression to select certain observations. For exam-
ple, you can specify range=_n_ <= 5 to select the first five lines. You can
specify range=not index(line, ’ERROR’) to select all lines that do not
contain the string ‘ERROR’. Selection must be based on _n_ or the variable
line, which contains a single line of the log.

10.5 Macro Variable Defaults

The SAS macro defaults are set globally in the file statrep.cfg. See section 7
for details. You can also reset the defaults within your document by specifying new
settings in a Sascode environment.

Table 5 shows the description and default values for each macro variable.

Table 5: Default Values for Macro Variables

Macro Variable Default Description
defaultlinesize 80 Line size for tabular ODS output
defaultpagesize 500 Page size for tabular ODS output
defaultstyle Statistical ODS style for graphical output
defaultdpi 300 Dots per inch (DPI) for graphical output
graphtype png graphics file format (’png’ or ’pdf’)
odsgraphopts string containing ODS graphics options
defaultdests listing listing or latex tabular output
latexstyle statrep ODS Style for SAS-generated LaTeX output

You can edit the statrep.cfg file to globally reset the defaults, or you can specify
commands to change the default anywhere in your document. For example, the fol-
lowing lines change all of the macro variable default settings for the duration of the
program. The program option specifies that the code be written only to the generated
program and not displayed.

37

\begin{Sascode}[program]
%let defaultlinesize=96;
%let defaultpagesize=50;
%let defaultstyle=statistical;
%let defaultdpi=100;
%let graphtype=pdf;
%let odsgraphopts=antialiasmax=10000;
\end{Sascode}

Figure 22: Reset SAS Macro Defaults within Document with SAS

When you change the defaultlinesize in the statrep.cfg file, the same value
is automatically used by SAS and by the StatRep package. When you change the
defaultlinesize inside your document, you change the line size used by SAS in
generating outputs; You must also set the line size in the \Listing tag to match.

The setting of defaultpagesize=500 produces a large virtual page so that SAS
does not break ODS objects into smaller pieces. When a stream of outputs is typeset,
page breaks can occur only between ODS objects or when SAS forces a page break
inside an ODS table.

The macro options and default macro variables work as follows: If an option is spec-
ified in a macro, its value is used regardless of the specification in the default macro
variables. If an option is not specified in a macro, the default macro variables provide
the values.

In summary, a direct option specification in a macro takes precedence over the de-
fault settings, and you can change the default settings by resetting the default macro
variables in your document or by editing the statrep.cfg file.

11 ODS Object Selection

To select and display ODS objects, you specify options in the \Listing tag, \Graphic
tag, or the %write macro. By default, when you omit object selection options, the
%write macro selects all ODS objects, the \Listing tag selects all ODS tables and
notes, and the \Graphic tag selects all ODS graphs. Table 6 summarizes how you
select ODS objects.

38

Table 6: ODS Object Selection Options

Option Action
options=table Select all tables and notes
options=graph Select all graphs
pattern= pattern Select all objects with a name matching a pattern. When an ODS

object name has more than two levels, the middle level name is a
group name. You can specify the pattern= option to select all
ODS objects in the specified ODS group. More generally, you can
specify any pattern to select all objects whose path contains the
pattern.

firstobj= Specifies the first object in the output stream to capture. The
specified and subsequent objects are captured.

lastobj= Specifies the last object in the output stream to capture. The first
object in the stream to capture is the first object produced by the
Sascode code block or the object specified in the firstobj=
option.

objects= option Specifies a space-separated list of objects to capture.

The firstobj= and lastobj= options can be modified with the option options=skiplast
and options=skipfirst. For more information about how to use these options,
see page 16.

11.1 Page Breaks

By default, a page break can occur between any two objects in the output stream.
However, you can use left and right angle brackets, <>, to delineate a set of objects
in which to suppress breaks. You use the symbols in the objects= option list in a
\Listing tag, a \Graphic tag, or a %write macro.

For example, you can use the symbols to prevent a break between a “Parameter Es-
timates” table and the “Fit Statistics” table that follows it with the following option:
objects = < ParameterEstimates FitStatistics >

After the < symbol, breaking is suppressed until the > symbol is encountered. After
the > symbol, a break is introduced and normal breaking continues.

In summary:

• You can use the <> symbols in pairs to keep ODS objects together.

• You can use the > symbol (unpaired with a matching <) to create a break be-
tween tables.

• You can use the < symbol (unpaired with a matching >) to suppress all breaks.

A break is always allowed before and after a graph.

39

See page 16 for an alternate method of controlling breaks with the options=nopage
and options=onebox options.

12 ODS Graphics

In SAS 9.3 and later, ODS Graphics is enabled by default in the SAS windowing
environment. ODS Graphics is not enabled by default in batch mode and in the SAS
windowing environment in SAS 9.2. When ODS Graphics is not enabled by default,
you can enable ODS Graphics by specifying the following statement:

ods graphics on;

You can enable ODS Graphics in StatRep for all steps by providing this code block at
the beginning of your LaTeX document:

\begin{Sascode}[program]
ods graphics on;

\end{Sascode}

12.1 ODS Graphics and GRSEG Graphics

When you create a graph with ODS Graphics, the style and dots per inch (DPI) can be
changed after the graph is created. The style and DPI are set when the graph is written
to the external file. This enables you to specify the options in the \Graphic tag or in
the %write macro.

On the other hand, when you create a GRSEG graph, the style and DPI are set when
the graph is created. That is why you must specify the options in the %output macro.
See section 10.1 for details about the %output macro options.

Table 7 summarizes the methods you can use to modify the style and DPI settings
when you create a graph.

Table 7: Methods to Change Graph Properties

Method ODS Graph GRSEG Graph
\Graphic tag options Yes No
%write macro options Yes No
%output macro options No Yes
Reset global default Yes Yes

The \Graphic tag, the %write macro, and the %output macro have style= and
dpi= options. For more information about these options, see section 4.2. Also, see
section 10.5 for details about using the SAS macro variables to reset global defaults.

40

For GRSEG graphs, there are only two choices for DPI: 300 (the default) and 96.
When the DPI is set to anything other than 300, then 96 is automatically used instead
for GRSEG graphs.

13 Advanced Examples

13.1 Capturing PRINT Output

Figure 23 shows simple use of the %startlist and %endlist macros.

\begin{Sascode}

*; %startlist(myprtlabel);
proc print data=sashelp.class(obs=10) noobs;
run;

*; %endlist;
\end{Sascode}

\Listing[caption={Mass Analysis}]{myprtlabel}

Figure 23: Capturing Print Output with the %startlist and %endlist Macros

The %startlist macro opens the ODS listing destination for writing. The PRINT
procedure code is executed, and the %endlist macro closes the ODS destinations.
The result is an output file called myprtlabel.lst, which is inserted into the doc-
ument with the \Listing tag.

The following section describes how to use the %startlist and %endlist macros
to capture and display part of a table.

13.2 Capturing Large Tables

The StatRep package automatically takes care of all page breaks in the output. Pages
are allowed to break between groups of ODS objects or wherever there is a new page
in the listing output.

In some cases, an ODS object is too large to fit on a page. There are two ways to
handle such large tables:

• Set the page size to a smaller size so that a single ODS object is broken into
pieces by using the SAS system option to control the size of the output parts.
By default, a large page size is in effect (defaultpagesize=500) and each
table appears as a complete output block. However, when you have tables that
are too long to fit on a page (that is, single ODS objects that will not fit on a

41

page), you must specify a smaller page size (for example, pagesize=50). The
tables will automatically split using the normal SAS rules for splitting tables.

• Save the ODS object to a SAS data set and manipulate the data set so that it
contains only part of the original output. Use PROC PRINT or DATA step
statements to generate and capture the modified data set.

Figure 24 shows an example of using a SAS data set to manipulate the ODS object
resulting from a problem that is very slow to converge. The output from this step
includes a long iteration history table. The goal is to display only the first few and last
few lines of the iteration history table.

\begin{Sascode}[store=doc]
proc prinqual data=X n=1 maxiter=2000

plots=transformation out=results;

*; ods output mtv=m convergencestatus=c;
title 'Linearize the Scatter Plot';
transform spline(X1-X3 / nknots=9);

run;
\end{Sascode}

Figure 24: Capturing Output to an ODS Output Data Set

Any arbitrary SAS statement can be sent to the generated program by preceding it
with a null SAS macro comment (%*;). With the output generated and the ODS
document doc created, the Sascode block shown in Figure 25 is passed directly to
the generated program and not displayed.

42

\begin{Sascode}[program]
%startlist(prqdb)
title3 'The PRINQUAL Procedure';
title5 'PRINQUAL MTV Algorithm Iteration History';
title6 ' ';

data _null_;
set m(rename=(variance=rsquare));
if _n_ le 13 or _n_ gt 1669;
if 11 le _n_ le 13 then do;

iternum = .; avechange = ._; criterionchange = ._;
maxchange = ._; rsquare = ._;
end;

file print ods=(template='Stat.Transreg.MTV');
put _ods_;

run;
title;

data _null_;
set c;
file print;
put @8 reason;

run;
%endlist;
\end{Sascode}

Figure 25: Manipulating the ODS Output Data Set for Printing

The %startlist macro opens the file prqdb to contain the printed results of the
code block. The DATA step reads, manipulates, and prints the data set m that was
just created by PROC PRINQUAL, and the printed content is written to the output file
prqdb.lst, which is shown in Figure 26.

43

Linearize the Scatter Plot

The PRINQUAL Procedure

PRINQUAL MTV Algorithm Iteration History

Iteration Average Maximum Proportion Criterion
Number Change Change of Variance Change Note

1 0.15125 0.93453 0.92376
2 0.04589 0.14682 0.98030 0.05653
3 0.03154 0.10125 0.98626 0.00596
4 0.02258 0.06890 0.98890 0.00265
5 0.01682 0.04777 0.99028 0.00137
6 0.01297 0.03782 0.99106 0.00078
7 0.01032 0.03029 0.99154 0.00048
8 0.00851 0.02514 0.99186 0.00032
9 0.00722 0.02124 0.99209 0.00023

10 0.00625 0.01871 0.99226 0.00017
.
.
.

1670 0.00001 0.00005 0.99371 0.00000
1671 0.00001 0.00005 0.99371 0.00000
1672 0.00001 0.00005 0.99371 0.00000 Converged

Algorithm converged.

Figure 26: Result of Printing ODS Output Data Set

Similarly, Figure 27 creates an output data set in the first step. The second step reads
in the data set and uses PROC PRINT to display the first 10 rows of a table.

44

\begin{Sascode}
title2 'Binary Table';

*---Perform Multiple Correspondence Analysis---;
proc corresp data=Cars binary;

*; ods output rowcoors=rc;
ods select RowCoors;
tables Origin Size Type Income Home Marital Sex;

run;
\end{Sascode}
\begin{Sascode}[program]
%startlist(crse1n)
proc print data=rc(obs=10) noobs label;
label label = '00'x;
title4 'The CORRESP Procedure';
title6 'Row Coordinates';

run;
%endlist;
\end{Sascode}

Figure 27: Capturing PROC PRINT Output from an ODS Data Set

13.3 Capturing Log Output

The SAS/IML example shown in Figure 28 illustrates the use of the macros that cap-
ture log output. In this example, the goal is to display SAS/IML error messages2.

2The example code generates an error because of a variable scoping issue. Module Mod7 is called from
module Mod8. Therefore, the variables available to Mod7 are those defined in the scope of Mod8. Because
no variable named x is in the scope of Mod8, an error occurs on the PRINT statement in Mod7. An error
would not occur if Mod7 was called from the main scope, because x is defined at main scope.

45

\begin{Sascode}

*; %startlog(psmodb)
proc iml;

x = 123;

start Mod7;
print "In Mod7:" x;

finish;

start Mod8(p);
print "In Mod8:" p;
run Mod7;

finish;
run Mod8(x);

*; %endlog;
\end{Sascode}
\Listing[caption={Error Message When a Variable is

Not Defined in a Module}]{psmodb}

Figure 28: Capturing Log Output

The captured log output is shown in Figure 29.

46

1599 +proc iml;
NOTE: IML Ready
1600 + x = 123;
1601 +
1602 + start Mod7;
1603 + print "In Mod7:" x;
1604 + finish;
NOTE: Module MOD7 defined.
1605 +
1606 + start Mod8(p);
1607 + print "In Mod8:" p;
1608 + run Mod7;
1609 + finish;
NOTE: Module MOD8 defined.
1610 +
1611 + run Mod8(x);
ERROR: Matrix x has not been set to a value.

statement : PRINT at line 1603 column 7
traceback : module MOD7 at line 1603 column 7

module MOD8 at line 1608 column 7

NOTE: Paused in module MOD7.
NOTE: Exiting IML.
NOTE: The SAS System stopped processing this step because of errors.

Figure 29: Complete Log Output Capture

The %startlog macro opens the specified file for writing, the IML procedure code
is executed, and the %endlog macro closes the file.

To omit the PROC IML code from the captured log output, specify the code=0 option
in the %endlog macro as follows:

%*; %endlog(code=0);

With the code=0 option specified, the captured log output is displayed as shown in
Figure 30.

47

NOTE: IML Ready
NOTE: Module MOD7 defined.
NOTE: Module MOD8 defined.
ERROR: Matrix x has not been set to a value.

statement : PRINT at line 1651 column 7
traceback : module MOD7 at line 1651 column 7

module MOD8 at line 1656 column 7

NOTE: Paused in module MOD7.
NOTE: Exiting IML.
NOTE: The SAS System stopped processing this step because of errors.

Figure 30: Log Output Capture: Procedure Code Omitted

You can further refine the captured log output with the range= option in the %endlog
macro as follows:

%*; %endlog(code=0, range=_n_ > 6 and _n_ le 24);

With the both options specified, the captured log output is displayed as shown in
Figure 31.

NOTE: Module MOD7 defined.
NOTE: Module MOD8 defined.
ERROR: Matrix x has not been set to a value.

statement : PRINT at line 1722 column 7
traceback : module MOD7 at line 1722 column 7

module MOD8 at line 1727 column 7

NOTE: Paused in module MOD7.

Figure 31: Abbreviated Log Output Capture: Procedure Code Omitted

The range=_n_ > 6 and _n_ le 24 option specifies that only the lines be-
tween 6 and 24 be included in the captured output. The value of _n_ refers to the
original line numbers before any filtering is done.

13.4 Capturing Output with Interactive Procedures

You can use the StatRep package to capture output from interactive procedures. Fig-
ure 32 shows how to capture output from the interactive IML procedure. It displays

48

three Sascode environments with \Listing outputs interleaved.

\begin{Sascode}

*; %output(doc)
proc iml;

x = 1;
print x;

\end{Sascode}

\Listing[caption={x = 1}]{x1a}

\begin{Sascode}
x = 2;
print x;

\end{Sascode}

\Listing[caption={x = 2}]{x2a}

\begin{Sascode}
x = 3;
print x;

*; %write(x1a, objects=x)

*; %write(x2a, objects=x#2)

*; %write(x3a, objects=x#3)
\end{Sascode}

\Listing[caption={x = 3}]{x3a}

Figure 32: Capture Output with an Interactive Procedure

When you need to interleave Sascode blocks to make a single ODS document, as in
Figure 32, you cannot rely on the StatRep package to automatically write the macros.
You must write the output capture macros manually.

When the StatRep package automatically writes the macros, there is a one-to-one
correspondence between a Sascode block and an ODS document. The interactive
procedure terminates when the ODS document is closed.

Figure 32 uses three Sascode blocks to create a single ODS document. The contents
of that ODS document are displayed in three separate listings. The ODS document
is created by the %output(doc) statement in the first Sascode environment, and
it is closed by the first %write macro in the third Sascode environment. The three
%write macros create the output for the three output listings. The fact that two of the
\Listing lines come before any of the output is created does not pose a problem.

49

13.5 Capturing and Displaying Numerical Results in Text

This example shows how you can capture SAS output values and display them in text.
For example, suppose you want to capture the R-square values from a PROC REG
step and a PROC GLM step and then display those values (but not display the steps)
in your document.

Use the following steps to capture the values and display them in text:

1. In your document source file, anywhere before you want to display the captured
values, include the following command to input a LATEX file (named
myconstants.tex in this example) to contain the LATEX definitions of the
captured values:

\input{myconstants}

The myconstants.tex file is actually generated in step 3, but you can in-
clude the preceding command before the file is generated because the SAS out-
put capture program will create the file and write the definitions before pdfLATEX
generates the final PDF file.

2. Include one or more procedure steps, such as the following PROC REG and
PROC GLM steps, which produce tables of fit statistics that are named fsr and
fsg, respectively:

\begin{Sascode}
proc reg data=sashelp.class;

model weight = height;
%*;ods output fitstatistics=fsr;
run; quit;

proc glm data=sashelp.class;
class sex;
model weight = sex | height;

%*;ods output fitstatistics=fsg;
run; quit;
\end{Sascode}

Include a null macro comment at the beginning of the ODS OUTPUT state-
ment in each step to cause the step to be run in the capture program but not be
displayed in the text.

3. Near the end of your document source file, include code such as the following
to generate the myconstants.tex file, extract the R-square values from the
fsr and fsg tables of fit statistics that were generated in step 2, and write those
values to myconstants.tex. The Sascode environment option, program,
runs the code without displaying it in the text.

50

\begin{Sascode}[program]
data _null_;

file 'myconstants.tex' termstr=nl;
set fsr(keep=label2 nvalue2 where=(label2='R-Square'));
put '\def \regrsq{' nvalue2 6.4 '}';
set fsg(keep=rsquare);
put '\def \glmrsq{' rsquare 6.4 '}';

run;
\end{Sascode}

4. Include the tags that are contained in the myconstants.tex file when you
want to display the values of those tags, as follows:

The R-square values are \regrsq\ and \qlmrsq, respectively.

Include a backslash after the tag when you need to include a space after the
value.

When you execute the generated SAS program, SAS writes the following tags in the
myconstants.tex file:

\def \regrsq{0.7705}
\def \glmrsq{0.7930}

When pdfLATEX processes the file, it replaces the \regrsq and \glmrsq tags with
the values that were written to the myconstants.tex file and produces the follow-
ing:

The R-square values are 0.7705 and 0.7930, respectively.

51

Part III

Appendix

52

A Installation and Requirements

You can install the StatRep package by downloading statrep.zip from support.
sas.com/StatRepPackage.

Table 8 shows the contents:

Table 8: Contents of the statrep.zip File

Filename Description
doc/statrepmanual.pdf The StatRep User’s Guide (this manual)
doc/quickstart.tex A template and tutorial sample LATEX file
sas/statrep_macros.sas The StatRep SAS macros
sas/statrep_tagset.sas The StatRep SAS tagset for LaTeX tabular output
statrep.ins The LATEX package installer file
statrep.dtx The LATEX package itself

Unzip the file statrep.zip to a temporary directory and perform the following
steps:

A.1 Step 1: Install the StatRep SAS Macros

Copy the file statrep_macros.sas to a local directory. If you have a folder where
you keep your personal set of macros, copy the file there. Otherwise, create a directory
such as C:\mymacros and copy the file into that directory.

A.2 Step 2: Install the StatRep LaTeX Package

These instructions show how to install the StatRep package in your LATEX distribution
for your personal use.

a) MikTEX users: If you do not have a directory for your own packages, choose a
directory name to contain your packages (for example, c:\localtexmf).

In the following instructions, this directory is referred to as the "root directory".

TEXLive users: If you maintain a system-wide LaTeX distribution and you want to
make StatRep available to all users, see more detailed information about how to in-
stall LaTeX packages at: http://www.tex.ac.uk/cgi-bin/texfaq2html?
label=what-TDS

Determine the location that LaTeX uses to load packages. At a command-line
prompt, enter the following command:
kpsewhich -var-value=TEXMFHOME

The command returns the root directory name in which LaTeX can find your per-
sonally installed packages.

In the following instructions, this directory is referred to as the "root directory".

53

support.sas.com/StatRepPackage
support.sas.com/StatRepPackage
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=what-TDS
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=what-TDS

b) Create the directory if it does not exist, and create the additional subdirectories
tex/latex/statrep. Your directory tree will have the following structure:

root directory/

tex/
latex/

statrep/

c) Copy the files statrep.dtx, statrep.ins, statrepmanual.pdf, and statrepmanual.tex
to the statrep subdirectory. Your directory tree will have the following structure:

root directory/

tex/
latex/

statrep/
statrep.dtx
statrep.ins
statrepmanual.pdf
statrepmanual.tex

d) Change to the statrep directory and enter the following command:
pdftex statrep.ins

The command creates several files, one of which is the configuration file, statrep.cfg.

MikTEX users: Add the root directory name from Step 2a according to these
instructions for installing packages for MikTeX (Register a user-managed TEXMF
directory): http://docs.miktex.org/manual/localadditions.html

A.3 Step 3: Tell the StatRep Package the Location of the StatRep
SAS Macros

Edit the statrep.cfg file that was generated in Step 2d so that the macro \SRmacropath
contains the correct location of the macro file from step 1. For example, if you copied
the statrep_macros.sas file to a directory named C:\mymacros, then you de-
fine macro \SRmacropath as follows:

\def\SRmacropath{c:/mymacros/statrep_macros.sas}

Use the forward slash as the directory name delimiter instead of the backslash, which
is a special character in LaTeX.

54

http://docs.miktex.org/manual/localadditions.html

You can now test and experiment with the package. Create a working directory, and
copy the file quickstart.tex into it.

To generate the quick-start document:

1. Compile the document with pdfLATEX. You can use a LATEX-aware editor such as
TEXworks, or use the command-line command pdflatex. This step generates
the SAS program that is needed to produce the results.

2. Execute the SAS program quickstart_SR.sas, which was automatically created
in the preceding step. This step generates the SAS results that are requested in
the quick-start document.

3. Recompile the document with pdfLATEX. This step compiles the quick-start
document to PDF, this time including the SAS results that were generated in the
preceding step.

In some cases listing outputs may not be framed properly after this step. If
your listing outputs are not framed properly, repeat this step so that LaTeX can
remeasure the listing outputs.

You can make changes to the file with a LATEX-aware editor or with any plain-text
editor such as NotePad or emacs.

If you ever want to uninstall the StatRep package, delete the statrep directory that
you created in the installation step 2d and remove the SAS macro file statrep_macros.sas
that you copied in installation step 1. MikTEX users must additionally update the file-
name database.
(MikTeX Options dialog: General-> Refresh FNDB)

B The longfigure Package

The longfigure package uses and relabels components of the well-known longtable
package, written by David Carlisle, to provide a table-like environment that can dis-
play a stream of subfigures as a single figure that can break across pages.

The longtable package defines a longtable environment, which produces ta-
bles that can be broken by TEX’s standard page-breaking algorithm. Similarly, the
longfigure package defines a longfigure environment, which produces figures
that can be broken by TEX’s standard page-breaking algorithm. The internal structure
of a long figure is similar to a long table. Rows might contain (for example) tables or
graphics. Page breaks can occur only between rows.

The longfigure package differs from the longtable package in the following
ways:

• The longfigure package supports two additional key-value options:

55

– The figname= option specifies the counter for numbering longfigure
environments. You can specify any string; the default is figure. When
you specify a figname= value for which no counter already exists, the
longfigure package loads the tocloft package and creates the counter.

– The resetby= option specifies a counter (for example, resetby=chapter)
such that output numbering is reset each time the counter value changes. If
a counter is specified that does not exist, the tocloft package is loaded
to create the new counter. For information about how the lists are typeset,
see the tocloft package documentation.

• The counters and macros that start with \LT in the longtable package are re-
named to start with \LF in the longfigure pacakge to avoid namespace con-
flicts when the two packages are used together. The generic macros that are de-
fined in the longtable package (\endfirsthead, \endhead, \endfoot,
and \endlastfoot) are also renamed with \LF as a prefix in the longfigure
package.

• The \LF@namemacro is based on the \fnum@tablemacro from the longtable
package. The \LF@namemacro returns the capitalized counter name and value.
For example, if the counter is figure and the macro is processing the second
longfigure, the \LF@name macro would contain the value “Figure 2.”

You can use the longfigure package defaults to produce a List of Figures by in-
serting the following tag in your document at the point where you want the list to
appear:

\listoffigures

The default counter used to display figures is the figure counter, but you can specify
a different counter. For example, if you want your figures to be labeled as “Display,”
specify figname=display when you load the longfigure package; to display a
List of Displays, insert the following command in your document at the point where
you want the list to appear:

\listofdisplay

Note: If you specify a counter that does not exist, an auxiliary file with extension
.lft is created to contain the information needed to create the list.

If you want to use more advanced features of the tocloft package, load it before
you load the longfigure package so that the longfigure package sees that the
counters specified by the figname= and resetby= options are already defined and
does not attempt to create them.

56

B.1 Example

The following lines produce a single figure that contains three images and one tabular
environment. Each element is a row of the longfigure environment. Page breaks
can occur between rows.

\documentclass{book}
\usepackage{graphicx}
\usepackage{longfigure}

\begin{document}
\begin{longfigure}{c}

\caption{My Long Figure}\label{mlfig}\\
\includegraphics[width=3in]{myfig1}\\
\includegraphics[width=3in]{myfig2}\\
\includegraphics[width=3in]{myfig3}\\
\begin{tabular}{ll}
one & two \\
three & four\\

\end{tabular}
\end{longfigure}

\end{document}

In this example, the {c} argument in the \begin{longfigure} command spec-
ifies only a single centered column. You can also specify multiple columns and, if
needed, use the \multicolumn command for more flexibility.

C The ODS StatRep LaTeX Tagset

The StatRep package provides limited support for SAS-generated LaTeX output3.

Three corresponding configuration variables are available. You can change them in
the file statrep.cfg or in your LaTeX document. For complete details about the
configuration file, see the section 7.

The variables are as follows:

• \SRdefaultdests specifies the type of ODS output to generate. The default
is listing, which corresponds to the ODS Listing destination.

• \SRlatexstyle specifies the ODS style for SAS-generated LaTeX tables.
The default is statrep, which is a monochromatic style based on the SAS
ODS LaTeX tagset.

3Since SAS 9.1, SAS® has provided an experimental LaTeX tagset. The statrep tagset is a simplified
version of that experimental tagset.

57

• \SRlatexdir specifies the name of the subdirectory into which SAS writes
the LaTeX output files. The default is tex.

To enable the use of LaTeX output in StatRep, follow these steps.

1. Change your StatRep configuration or in your LaTeX document. The \SRdefaultdests
setting selects the default output type; it can have the value latex or listing.
The default value is listing. You can change the value in the statrep.cfg
configuration file as follows:

\def\SRdefaultdests{latex}

Alternatively, you can change the value in your LaTeX document after the
StatRep package is loaded and before your document begins:

\documentclass{article}
\usepackage{statrep}
\def\SRdefaultdests{latex}
\begin{document}

2. Run the included SAS program statrep_tagsets.sas before you generate
the SAS output for your document. This program creates a statrep tagset
and a statrep ODS style. When you run the program to generate the output
for your document, SAS must be able to find the statrep tagset in order to
produce LaTeX tabular output that is compatible with the StatRep package.

For details on installing and storing tagsets see this SAS® Note: http://
support.sas.com/kb/32/394.html

C.1 How It Works

When you first compile your document with pdflatex, the SAS program to produce
the requested outputs is generated.

When you run the program, SAS checks the type of output requested, which is con-
trolled with the \SRdefaultdests setting. If the output type is latex, LaTeX
output is written to a subdirectory named tex. If the output type is listing, ODS
Listing output is written to a subdirectory named lst.

When you recompile your document with pdflatex, the \Listing tag displays
the requested output objects, insuring that your outputs are displayed properly with
automatic page breaking.

58

http://support.sas.com/kb/32/394.html
http://support.sas.com/kb/32/394.html

C.2 Customization

ODS Style You can specify an ODS style for your LaTeX output with the \SRlatexstyle
setting. The default is statrep, a monochrome style that is generated by the
SAS program statrep_tagsets.sas. Examples of different styles are pro-
vided in the section Style Examples.

If you specify an ODS style that uses color, specify the color option when you
load the StatRep package.

\documentclass{article}
\usepackage[color]{statrep}

The style setting for LaTeX tables cannot be changed within a document. That
is, you cannot mix ODS LaTeX styles within a document. If you change the
style within your document, the last style specified is used for all LaTeX out-
puts.

Mixing Output Types You can mix output types with the dest= option on the \Listing
tag. The option overrides the global \SRdefaultdests setting.

For example, if your \SRdefaultdests is set to latex, you can specify that
a particular \Listing output to be in listing format by specifying dest=listing
in the \Listing tag options, as follows:

\Listing[store=mydoc, dest=listing, caption={Results}]{outa}

Output Directory Name You can change the name of the directory into which SAS
writes the outputs with the \SRlatexdir variable. The default subdirectory
name is tex.

C.3 Caution

In some cases the LaTeX tagset produces tables that are too wide to fit in the text
block. In some cases, you can shift the table to the left so the table will fit on the page.
You can shift the table with the \LFleft command.

The following example moves the left margin of the output 1 inch to the left of its
normal location (the start of the text block). The output is then typeset and the margin
is set back to its default value of 0.

\LFleft=-1in
\Listing[store=mydoc, caption={Results}]{outa}
\LFleft=0in

59

In some cases, the table will not fit on the page at all. The only solution in those
cases is to change back to the listing output destination, modifying the fontsize
and linesize as needed.

Some ODS styles may not work with the LaTeX tagset. For example, some styles
specify fonts that are available to SAS but not to LaTeX.

C.4 Style Examples

Figure 33: Listing Output

Figure 34: LaTeX Output, default style

60

Figure 35: LaTeX Output, statistical style

Figure 36: LaTeX Output, journal style

61

Figure 37: LaTeX Output, htmlblue style

D StatRep with SAS Studio or SAS University Edition

You can use StatRep with the SAS Studio web-based interface and SAS University
Edition. You can find more information on these applications here:

SAS Studio is a web application for SAS that you access through your web browser.
http://support.sas.com/software/products/sasstudio/

SAS University Edition is free and includes the SAS products Base SAS, SAS/STAT,
SAS/IML, SAS/ACCESS Interface to PC Files, and SAS Studio. http://
support.sas.com/software/products/university-edition/index.
html

With a web interface, there is no concept of a current directory, so you must let SAS
know where your files are located. In order to use StatRep, SAS needs to know the
following locations:

• the directory that contains your LaTeX file.

• the full path to the file statrep_macros.sas.

• the location of the StatRep ODS tagset, if you prefer LaTeX output (instead of
Listing output). See the previous chapter for details on how to create and use
this tagset.

62

http://support.sas.com/software/products/sasstudio/
http://support.sas.com/software/products/university-edition/index.html
http://support.sas.com/software/products/university-edition/index.html
http://support.sas.com/software/products/university-edition/index.html

With SAS University Edition, you run a virtual machine on your local computer so
you can create a shared folder that SAS can access. For SAS Studio folder locations,
see the following section for details.

D.1 SAS Studio Folders

Other than SAS University Edition, there are three 3 types of installations for SAS
Studio:

• SAS Studio Single User

• SAS Studio Basic (Windows or UNIX)

• SAS Studio Mid-Tier (Enterprise Edition)

For Single User, My Folders is your home directory on your local machine and the
folders list will also include folders for your desktop, documents folder, and mapped
drives.

For both Enterprise and Basic edition, the path for My Folders is the home directory
on the remote SAS server. That is, the file system in the Folders accordion is not your
local machine; it is the location of the remote server.

On Windows, you can add a Folder Shortcut back to your local computer. The shortcut
must be accessible by the remote server. On UNIX, you can add a Folder Shortcut to
your home directory.

You may need to ask your local SAS administrator about how to create a folder short-
cut to your local files.

D.2 SAS University Edition: Creating a Shared Folder

Suppose you have a directory called mydocs that contains your LaTeX file. You
create a shared folder in the virtual machine as shown in the following screenshot:

63

When you select Shared Folders and click to add a new path, enter the informa-
tion (path and name) as shown in the following screenshot:

The Folder Path is the absolute path to the directory and the folder name is the last
part of that path. The name is a short-hand name that is used later in your code. Make
sure to select Auto-mount if you want to use the folder in later SAS sessions (as
you probably will). The result of entering the information is shown in the following

64

screenshot.

When you start SAS Studio, the Folder panel shows your new shared folder as a
Folder Shortcut. SAS will know this folder by the full name /folders/myshortcuts/mydocs,
which means you can use that name to assign filerefs and libnames as you normally
would in any SAS program.

Notice the Folder panel in the following screenshot. You can disregard most of the
code in the program editor window, but do notice the first line that references the new
shared folder.

65

The LIBNAME statement in the code window assigns the mytempl libref to your
shared folder.

D.3 The Bridge Between LaTeX and SAS

Now you have your working directory and SAS knows that there is such a location.
The final step is to define a bridge between your LaTeX document and SAS.

You connect the two by defining a LaTeX tag called \SRrootdir, which contains
the path to your shared folder as displayed in the following LaTeX code:

\documentclass{article}
\usepackage[margin=1in]{geometry}
\usepackage[color]{statrep}
\def\SRrootdir{/folders/myshortcuts/mydocs}
\def\SRmacropath{/folders/myshortcuts/mydocs/statrep_macros.sas}
\begin{document}

This document preamble performs the following:

• Specifies that the document use the article class.

• Loads the geometry package and specifies 1 inch margins on all sides.

66

• Loads the statrep package and specifies that outputs can include color.

• Defines the \SRrootdir path (the path to the working directory) as the shared
folder you created in the previous steps.

• Defines the \SRmacropath that contains the full path and file name of the
statrep_macros.sas file that is part of the StatRep package. This example
shows that it is in the same directory as the LaTeX file, but you can put the
macros anywhere you like, as long as SAS can find the file (that is, as long as
the macros are in a shared folder)

With this preamble, you can start writing your content; when StatRep automatically
generates the SAS program to create your output, the paths you have defined here are
used so SAS can find the macros it needs and so it can write the requested outputs to
your working directory.

From this point on, you use StatRep just as you would normally.

67

Index

autopage option, 15

caption font, 26
caption= option, 13
configuration, 26, 36
copy and paste, 9, 11
customizing, 26, 36

Datastep environment, 6, 9, 16
options, 9

default settings, 36
display line command, 11
display option, 9–11
dpi, 27
dpi= option, 14

figname option, 5, 55
figure names, 5
first= option, 9
firstobj= option, 14
fontsize= option, 9, 11, 13

generate option, 5
graph option, 15
graphic directory, 27
Graphic tag, 6, 12

options, 13
graphics type, 27
GRSEG graphics, 39

height= option, 14

installing, 52
interactive SAS session, 9, 11

last= option, 9
lastobj= option, 14
LaTeX output, 26, 56
linesize, 27
linesize= option, 13, 14
list of outputs, creating, 55
list option, 15
Listing tag, 6, 12

options, 13
longfigure package, 54

macro variables, 36
mixing LaTeX styles, 58
mixing output types, 58

newpage option, 15
nopage option, 15

objects= option, 14
ODS graphics, 39
ODS graphics options, 27
ODS LaTeX output, 56
ODS object selection, 20, 21, 37
ODS output style, 28
onebox option, 15
options= option, 14
output width, 27

package
defaults, 36
options, 5
requirements, 5
usage, 5

pagesize= option, 15
pattern= option, 15
PDF graphics, 27
PNG graphics, 27
program line command, 11
program option, 9, 11

reading data, 9
resetby= option, 5

SAS macro location, 27
SAS macro options, 14
SAS macros, 33

endlist, 34, 35, 40
endlog, 34, 35, 44
endoutput, 7, 33, 34
output, 7, 33, 34
startlist, 34, 35, 40
startlog, 34, 35, 44
variables, 36
write, 8, 33, 34

SAS ODS outputs, 12
SAS Studio, 61, 62

68

SAS University Edition, 61, 62
Sascode environment, 6, 10, 18

line commands, 11, 19
options, 11

scale= option, 13
skipfirst option, 15
skiplast option, 15
statrep tagset, 56–58
statrep.cfg, 36
statrep_macros.sas, 7
store= option, 11, 13, 15
style= option, 15

table option, 15
tocloft package, 55

University Edition, 61, 62

verbatim font, 28
virtual machine, 62

web interface, 61
wide output, 13
width= option, 13

69

	User's Guide
	Synopsis
	Introduction
	Requirements for the StatRep Package
	Package Usage

	Getting Started
	Syntax
	Code Environments
	Outputs

	Examples
	Using the Datastep Environment
	Using the Sascode Environment
	Using the Sascode Environment with Line Commands
	Selecting ODS Objects by Default
	Specifying and Capturing ODS Objects by Name

	Reference Manual
	Overview
	Customizing StatRep
	About the Program Preamble
	Two Methods of Writing
	StatRep SAS Macros
	The %output and %endoutput Macros
	The %write Macro
	The %startlist and %endlist Macros
	The %startlog and %endlog Macros
	Macro Variable Defaults

	ODS Object Selection
	Page Breaks

	ODS Graphics
	ODS Graphics and GRSEG Graphics

	Advanced Examples
	Capturing PRINT Output
	Capturing Large Tables
	Capturing Log Output
	Capturing Output with Interactive Procedures
	Capturing and Displaying Numerical Results in Text

	Appendix
	Installation and Requirements
	Step 1: Install the StatRep SAS Macros
	Step 2: Install the StatRep LaTeX Package
	Step 3: Tell the StatRep Package the Location of the StatRep SAS Macros

	The longfigure Package
	Example

	The ODS StatRep LaTeX Tagset
	How It Works
	Customization
	Caution
	Style Examples

	StatRep with SAS Studio or SAS University Edition
	SAS Studio Folders
	SAS University Edition: Creating a Shared Folder
	The Bridge Between LaTeX and SAS

	Index

