The \texttt{HEP-MATH} package*

Extended math macros

Jan Hajer†

2023/07/01

Abstract

The \texttt{HEP-MATH} package provides some additional features beyond the \texttt{mathtools} and \texttt{amsmath} packages.

To use the package place \texttt{\usepackage{hep-math}} in the preamble.

The \texttt{mathtools} \cite{1} package is loaded, which in turn loads the \texttt{AMS-LaTeX amsmath} \cite{2} package. Horizontal spacing in inline equations and page breaks in block equations are marginally adjusted.

Spacing around \texttt{\left} and \texttt{\right} is fixed with the \texttt{mleftright} package \cite{3}.

\section{Macros}

\texttt{\mathdef} The \texttt{\mathdef\{name\}\{arguments\}\{code\}} macro (re-)defines macros only within math mode without changing the text mode definition.

\texttt{\i} The imaginary unit \texttt{i} and the differential \texttt{d} are defined using this functionality.

\texttt{\overline} The \texttt{\overline} macro is adjusted to work also outside of math mode using the \texttt{soulutf8} \cite{4} package.

\texttt{\oset} A better looking over left right arrow is defined i.e. $\overset{\text{over}}{\text{math}}$ using a new \texttt{\oset\{over\}\{math\}} functionality.

\texttt{\overleft} Diagonal matrix \texttt{\diag}, signum \texttt{\sgn}, trace \texttt{\tr}, \texttt{\Tr}, and \texttt{\rank} operators are defined.

\texttt{\overleftright} The real and imaginary projectors are redefined to look like ordinary operators.

\texttt{\diag} \texttt{\cos} and \texttt{\tan} are adjusted to have the same height as \texttt{\sin}.

\texttt{\sgn} \texttt{\arccsc} and other inverse trigonometric functions are defined.

\texttt{\Re} \texttt{\Im}

\texttt{\sin} \texttt{\cos}

\texttt{\tan} The \texttt{\frac\{number\}\{number\}} macro is accompanied by \texttt{\nicefrac\{number\}\{number\}}, \texttt{\textfrac\{number\}\{number\}}, and \texttt{\flatfrac\{number\}\{number\}} leading to $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, and $\frac{1}{2}$. The \texttt{\textfrac} macro is mostly intended if a font with oldstyle numerals is used.

\texttt{\unit\{value\}\{unit\}} The correct spacing for units is provided by the macro \texttt{\unit\{value\}\{unit\}} from the \texttt{units} package \cite{5} which can also be used in text mode. The macro \texttt{\inv\{power\}\{text\}} allows to avoid math mode also for inverse units such as 5 fb^{-1} typeset via \texttt{\unit[5]{\inv[fb]}}.

\texttt{\nicefrac}

\texttt{\flatfrac}

\texttt{\textfrac}

\texttt{\inv}

\texttt{*This document corresponds to \texttt{HEP-MATH v1.2.}}

\texttt{†jan.hajer@tecnico.ulisboa.pt}

\texttt{\nicefrac}

\texttt{\flatfrac}

\texttt{\textfrac}
Some macros of the \texttt{physics} package \cite{6} are reimplemented with a more conventional typesetting in mind. Finer details about mathematical typesetting can be found in \cite{7}.

1.2 Differentials and derivatives

\texttt{\differential{⟨symbol⟩}}, \texttt{\newderivative{⟨name⟩}{⟨symbol⟩}}, and \texttt{\newpartialderivative{⟨name⟩}{⟨symbol⟩}} allow to define a differential with correct spacing, a derivative using this differential, and if necessary a partial derivative that can handle three dimensional derivatives.

These macros are used for the usual differential and derivative, producing dx via \texttt{\d x} and $\partial^2 f/\partial x \partial y$ via $\partial^2 f/\partial x \partial y$.

\texttt{\eval\langle x \rangle}$ \texttt{\order\langle x \rangle}$ \texttt{\comm{⟨x⟩}{⟨y⟩}}$ \texttt{\acomm{⟨x⟩}{⟨y⟩}}$ \texttt{\newpair{⟨name⟩}{⟨left delim⟩}{⟨right delim⟩}{⟨subscript⟩}{⟨superscript⟩}}$ \texttt{\pb xy}$ \texttt{\comm xy}$ \texttt{\acomm xy}$

Similarly a functional variation and functional derivative are defined.

\texttt{\var\langle characters⟩}$ \texttt{\cancel{⟨characters⟩}}$ \texttt{\slashed{⟨character⟩}}$ respectively.

\texttt{\abs x}$ \texttt{\norm x}$ \texttt{\norm[2]x}$ \texttt{\eval x}_0^\infty$

\texttt{\order{⟨x⟩}}$ \texttt{\eval* x}_0^\infty$

\texttt{\comm{⟨name⟩}{⟨left delimiter⟩}{⟨right delimiter⟩}{⟨subscript⟩}{⟨superscript⟩}}$ macro is defined and used for the definition of (anti-)commutators and Poisson brackets.

\texttt{\cancel{⟨characters⟩}}$ \texttt{\slashed{⟨character⟩}}$
They can easily be redefined using e.g. \texttt{newpair}\comm{\brack}\texttt{brack_\-}.

Macros for the bra-ket notation are introduced.

\begin{tabular}{llll}
$\langle x |$ & $| x \rangle$ & $\langle x | y \rangle$ & $| x \rangle \langle y |$
\end{tabular}

\begin{tabular}{llll}
$\bra x$ & $\ket x$ & $\braket xy$ & $\ketbra xy$
\end{tabular}

Macros for row and column vectors are introduced together with a symbol for transpose vectors.

\begin{tabular}{lll}
$\langle x | y | z \rangle$ & $\langle x \rangle$ & $(x, y, z)^T$
\end{tabular}

\section{Environments}

\texttt{eqnarray} The \texttt{eqnarray} environment is depreciated, the \texttt{split}, \texttt{multiline}, \texttt{align}, \texttt{multlined}, \texttt{aligned}, \texttt{alignedat}, and \texttt{cases} environments of the \texttt{amsmath} and \texttt{mathtools} packages should be used instead.

\texttt{equation} Use the \texttt{equation} environment for short equations.

\begin{equation}
\begin{aligned}
\text{left} &= \text{right} \\
\end{aligned}
\end{equation}

\texttt{multiline} Use the \texttt{multiline} environment for longer equations.

\begin{equation}
\begin{aligned}
\text{left} &= \text{right 1} \\
+ \text{right 2} \\
\end{aligned}
\end{equation}

\texttt{split} Use the \texttt{split} sub environment for equations in which multiple equal signs should be aligned.

\begin{equation}
\begin{split}
\text{left} &= \text{right 1} \\
\text{right 2} \\
\end{split}
\end{equation}

\texttt{align} Use the \texttt{align} environment for the vertical alignment and horizontal distribution of multiple equations.

\begin{equation}
\begin{aligned}
\text{left} &= \text{right 1} \quad \text{left} = \text{right 2} \\
\text{left} &= \text{right} \\
\text{left} &= \text{right} \\
\text{left} &= \text{right} \\
\end{aligned}
\end{equation}

\texttt{aligned} Use the \texttt{aligned} environment within a \texttt{equation} environment if the aligned equations should be labeled with a single equation number.

\texttt{multlined} Use the \texttt{multlined} environment if either \texttt{split} or \texttt{align} contain very long lines.
\begin{equation} \begin{split}
\left. \begin{array}{l}
\text{left} \equiv \text{right 1} \\
\text{right 2} \equiv \text{right 3}
\end{array} \right] = \begin{array}{l}
\text{right 1} \\
\text{right 2} + \text{right 3}
\end{array} . \quad (5)
\end{split} \end{equation}

\textbf{alignat} Use the \texttt{alignat} environment together with the \texttt{\mathllap} macro for the alignment of multiple equations with vastly different lengths.

\begin{subequations}
\begin{alignat}{2}
\text{left} &= \text{long right} \quad & , & \hspace{1cm} (6a) \\
\text{le. 2} &= \text{ri. 2} \quad , & \hspace{1cm} \text{le. 3} = \text{ri. 3} & \quad (6b)
\end{alignat}
\end{subequations}

As a rule of thumb if you have to use \texttt{\notag}, \texttt{\nonumber}, or perform manual spacing via \texttt{\quad} you are probably using the wrong environment.

\section{Implementation}

\texttt{\<*package>}

Load the \texttt{mathtools} package \cite{mathtools} which loads the \texttt{amsmath} package \cite{amsmath}. Allow page breaks within equations if necessary. Adjust the thick and med mu skips slightly.

\begin{verbatim}
\RequirePackage{mathtools}
\mathtoolsset{centercolon}
\allowdisplaybreaks[1]
\thickmuskip=5mu plus 3mu minus 1mu
\medmuskip=4mu plus 2mu minus 3mu
\end{verbatim}

\texttt{\mathdef} Define the \texttt{\mathdef{\langle name\rangle}{\langle arguments\rangle}{\langle macro\rangle}} macro which (re-)defines macros in math mode only. This macro is implemented using the \texttt{xparse} package \cite{xparse}.

\begin{verbatim}
\RequirePackage{xparse}
\DeclareDocumentCommand{\mathdef}{mO{0}om}{%
\expandafter\let\expandafter\next\csname hep@text\string#1\endcsname=#1
\expandafter\newcommand\csname hep@math\string#1\IfNoValueTF{#3}{\endcsname[#2]}{\endcsname[#2][#3]}{#4}
\DeclareRobustCommand\#1{%\ifmmode
\expandafter\let\expandafter\next\csname hep@math\string#1\endcsname
\else
\expandafter\let\expandafter\next\csname hep@text\string#1\endcsname
\fi
\next
}%
\end{verbatim}

\text{i} Provide an upright imaginary unit in math mode.

\newcommand{\imaginaryunit}{\text{i}} \AtBeginDocument{\mathdef{\text{i}}{\imaginaryunit}}

\overline Redefine \overline to be a text macro using the soulutf8 package [4]. Extend it as a math macro with the original definition from the amsmath package [2].

\RequirePackage{soulutf8}
\def\overline#1{{\renewcommand{\ULdepth}{-1.9ex}{}\uline{#1}}}
\newcommand\textoverline[1]{{\setul{-1.9ex}{}\ul{#1}}}
\let\overline\textoverline
\DeclareRobustCommand{\over@line}[1]{\@@overline{#1}}
\mathdef{\overline}{\over@line}
\newcommand{\hep@widebar}[1]{{\mkern2.5mu\overline{\mkern-2.5mu#1\mkern-.5mu}\mkern.5mu}}
\newcommand{\widebar}[1]{{\settowidth{\dimen0}{\ensuremath{#1}}\ifdim\dimen0>.475em\hep@widebar{#1}\else\bar{#1}\fi}}

\oset Define a new overset macro \oset{⟨offset⟩}{⟨over⟩}{⟨base⟩}.
\newcommand{\oset}[3][-1pt]{{\text{\raisebox{.2ex}{$\mathop{#3}\limits^{\vbox to#1{\kern-2\ex@\hbox{$\scriptscriptstyle#2$}\vss}}$}}}}

\overleftright Define a over left right arrow \overleftright{⟨base⟩}.
\newcommand{\overleft}[1]{{\oset{\leftarrow}{#1}}}
\newcommand{\overright}[1]{{\oset{\rightarrow}{#1}}}
\newcommand{\overleftright}[1]{{\oset{\leftrightarrow}{#1}}}

eqnarray Undefine the eqnarray environment if not prevented by package option.
\newif\ifhep@eqnarray\hep@eqnarraytrue
\ifhep@eqnarray\else
\let\eqnarray\@undefined
\let\endeqnarray\@undefined
\fi

A.1 Operators
\tr Provide the \diag, \sgn, and some other operators.
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\Res}{Res}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\diag}{diag}
Redefine the real and imaginary projectors.
\let\Re\relax\DeclareMathOperator{\Re}{Re}
\let\Im\relax\DeclareMathOperator{\Im}{Im}

Define a transpose symbol.
\let\trans\transpose
\Re\Im
\let\Re\relax\DeclareMathOperator{\Re}{Re}
\let\Im\relax\DeclareMathOperator{\Im}{Im}
\let\Re\relax\DeclareMathOperator{\Re}{Re}
\let\Im\relax\DeclareMathOperator{\Im}{Im}

A.1.1 Trigonometric functions
\cos
\tan
\arccsc
\arcsec
\arccot
\asin
\acos
\atan
\acsc
\asec
\acot
\csch
\sech

A.2 Units and fractions
\unit Load the units package [5] which provides the units and nicefrac macros. Patch the unit macros to behave like mathinner within an equation
\RequirePackage{units}
\let\oldunit\unit
\renewcommand{\unit}[2][]{%
 \ifthenelse{\boolean{mmode}}{%\mathinner{\oldunit[#1]{#2}}%}
 \oldunit[#1]{#2}%
}%
\let\oldunitfrac\unitfrac
\renewcommand{\unitfrac}[3][]{%
 \ifthenelse{\boolean{mmode}}{%\mathinner{\oldunitfrac[#1]{#2}{#3}}%}
 \oldunitfrac[#1]{#2}{#3}%
}%
\inv \textfraction{\textfrac}
\flatfraction{\flatfrac}
\int
\newcommand{\int}[3]{\ensuremath{\textstyle{\int_{#1}^{#2}\text{#3}}}}

A.2.1 Differentials and derivatives
\let\hep\int
\RenewDocumentCommand{\int}{o{_{-}}}{%\def\temp{\hep\flatfrac\{\IfValueT{#2}{#2}\}}{\IfValueT{#1}{\mathop{\temp\mathop{\int}}}{}%\temp}%
\DeclarePairedDelimiterX{\hepflatfrac}[2]{.}{.}{%\kern-\nulldelimiterspace#1\delimsize/%\hepleftdelim#2\kern-\nulldelimiterspace%}
\NewDocumentCommand{\flatfrac}{somm}{%\mathinner{%\IfBooleanTF{#1}{%\hepflatfrac*{#3}{#4}}{%\IfNoValueTF{#2}{\hepleftdelim#3/\hepleftdelim#4}{%\hepflatfrac{#2}{#3}{#4}}}}%}
\texttt{\differential} Define a generic differential \texttt{\differential}.

\begin{verbatim}
\newcommand{\differential}[1]{\mathop{}\!#1}
\end{verbatim}

\texttt{\newderivative} Define a generic derivative.

\begin{verbatim}
\newcommand{\newderivative}[2]{
 \NewDocumentCommand{#1}{somse{^}}{%
 \IfBooleanTF{##4}{%
 \IfBooleanTF{##1}{\nicefrac}{\frac}%
 }{%
 \IfBooleanTF{##1}{\flatfrac}{\dfrac}%
 }{%
 \differential#2\IfValueT{##5}{^{##5\!}}\IfValueT{##2}{##2}%
 }{%
 \differential#2{##3}\IfValueT{##5}{^{##5}}%
 }%
 }{%
}
\end{verbatim}

\texttt{\newpartialderivative} Define a generic partial derivative

\begin{verbatim}
\newcommand{\newpartialderivative}[2]{
 \NewDocumentCommand{#1}{somsE{^}{1}oE{^}{1}oE{^}{1}}{%
 \def\hep@one{\IfValueTF{##6}{##7}{0}}
 \def\hep@two{\IfValueTF{##8}{##9}{0}}
 \def\hep@sum{\the\numexpr##5+\hep@one+\hep@two\relax}
 \IfBooleanTF{##4}{%
 \IfBooleanTF{##1}{\nicefrac}{\frac}%
 }{%
 \IfBooleanTF{##1}{\flatfrac}{\dfrac}%
 }{%
 \differential#2\ifnum\hep@sum=1\relax\else{^\hep@sum}\fi
 \IfValueT{##2}{##2}%
 }{%
 \differential#2{##3}\ifnum##5=1\relax\else{^{##5}}\fi%
 \IfValueT{##6}{#2##6\ifnum##7=1\relax\else{^{##7}}\fi}%
 \IfValueT{##8}{#2##8\ifnum##9=1\relax\else{^{##9}}\fi}%
 }%
 }{%
}
\end{verbatim}

\texttt{\diffsymbol} Define the differential \texttt{\d} and the usual derivative.

\begin{verbatim}
\providecommand{\diffsymbol}{d}
\end{verbatim}

\texttt{\diff} \texttt{\d}

\texttt{\newcommand{\diff}{\differential\diffsymbol}}

\texttt{\AtBeginDocument{\mathdef{\d}{\diff}}}
Define the partial differential and derivative.\]
\newcommand\partialdifferential{\differential\partial}
\newcommand\pd{\partialdifferential}
\newpartialderivative{\partialderivative}{\partial}
\newcommand\pdv{\partialderivative}

Define the gauge covariant differential \D.\]
\providecommand\gaugediffsymbol{D}
\newcommand\gaugediff{\differential\gaugediffsymbol}
\newcommand\D{\gaugediff}

Define the covariant differential \cd.\]
\newcommand\covariantdiff{\differential\nabla}
\newcommand\cd{\covariantdiff}

Define the functional variation and derivative.\]
\newcommand\variation{\differential\delta}
\newcommand\var{\variation}
\newpartialderivative{\functionalderivative}{\delta}
\newcommand\fdv{\functionalderivative}

Load the cancel [8] and slashed [9] packages which provide the \cancel and \slashed macros.\]
\RequirePackage{cancel}
\RequirePackage{slashed}
\declareslashed{}{/}{.14}{0}{L}
\declareslashed{}{/}{.06}{0}{\D}
\declareslashed{}{/}{.055}{0}{\pd}

A.3 Paired delimiters\]
\left \right
\RequirePackage{mleftright}
\mleftright

Allow for macros to have an empty argument using the etoolbox package [11].\]
\RequirePackage{etoolbox}
\newcommand\noargumentsymbol{\cdot}
\newcommand\optionalargument[1]{\ifblank{#1}{\noargumentsymbol}{#1}}

\abs Absolute value and norm.\]
\DeclarePairedDelimiter\abs{\lvert}{\rvert}
\newcommand\hep@norm[1]{\lVert#1\rVert}
\DeclarePairedDelimiterPP\hep@pnorm[2]{}{_{#1}}{#2}
\NewDocumentCommand{\norm}{som}{%
Floor and ceiling paired delimiters.
\texttt{\floor}\texttt{\ceil} Floor and ceiling paired delimiters.

Order symbol and macro.
\texttt{\ordersymbol}\texttt{\order} Order symbol and macro.

Vertical evaluation bar
\texttt{\evaluated}\texttt{\eval} Vertical evaluation bar

Shortcuts for rows and columns
\texttt{\row}\texttt{\column} Shortcuts for rows and columns

Define a generic midbar.
\texttt{\midbar}\texttt{\midbar} Define a generic midbar.
Check if \texttt{nfssect-cfr} is loaded and patch the global \texttt{\set} macro into the \texttt{cfr} namespace

\begin{verbatim}
\RequirePackage{xpatch}
@ifundefined{exfs@merge@families}{}{%
\xpatchcmd{\exfs@merge@families}{\set}{\cfr@set}{}{}%
\xpatchcmd{\exfs@merge@families}{\set}{\cfr@set}{}{}%
\xpatchcmd{\exfs@merge@families}{\set}{\cfr@set}{}{}%}
\end{verbatim}

\textbf{\suchthat} Define a \texttt{\set} macro that allows a midbar via \texttt{\suchthat}.
\begin{verbatim}
\providecommand\suchthat{\midbar}
\DeclarePairedDelimiterX\set[1]\{\}{%
\renewcommand\suchthat{\midbar[\delimsize]}#1%
\end{verbatim}

\textbf{\probabilitysymbol} Redefine the \texttt{\Pr} macro to a macro that takes a \texttt{\given} macro and generates a midbar.
\begin{verbatim}
\providecommand{\probabilitysymbol}{\operatorname{Pr}}
\providecommand\given{\midbar}
\DeclarePairedDelimiterXPP{\hep@Pr}[1]{\probabilitysymbol}(){}{%
\renewcommand\given{\midbar[\delimsize]}#1%
\end{verbatim}

\textbf{A.3.2} Commutators
\textbf{\newpair} Define the \texttt{\newpair} macro that generates pairs surrounded by brackets.
\begin{verbatim}
\NewDocumentCommand{\newpair}{mmmme{_}e{^}}{%
\IfNoValueTF{#4}{%
\IfNoValueTF{#5}{%
\DeclarePairedDelimiterX{#1}[2]{#2}{#3}{\hep@Pr[1]{}}%
\DeclarePairedDelimiterXPP{#1}[2]{}{#2}{#3}{}^{#5}%
\renewcommand\given{\midbar[\delimsize]}#11% \end{verbatim}
Poisson bracket, commutator and anti-commutator.

\innerproduct
\poissonbracket
\commutator
\anticommutator
\anticomm

A.3.3 Bra-ket notation

\braket A.3.3 Bra-ket notation -- Define the space within braket notation.

\DeclarePairedDelimiter \braket [2][\langle}{\rangle]{% Define the braket macro.

\DeclarePairedDelimiterX \bra [1][\langle]{\rvert}{\braketinnerspace}{% Define the bra macro.
\textbf{\texttt{\textbackslash ket}} Define the ket macro.

\begin{verbatim}
\DeclarePairedDelimiterXPP{\ket}[1]{{\lvert}{{\rangle}}}{\braketinnerspace}{\hep@left@delim#1\braketouterspace}
\end{verbatim}

\textbf{\texttt{\textbackslash ketbra}} Define the ketbra macro.

\begin{verbatim}
\NewDocumentCommand{\ketbra}{smm}{\IfBooleanTF{#1}{\ket*{#2}\bra*{#3}}{\ket{#2}\bra{#3}}}
\end{verbatim}

\textbf{\texttt{\textbackslash matrixelement}} Define the matrixelement macro.

\begin{verbatim}
\DeclarePairedDelimiterX{\matrixelement}[3]{\langle}{\rangle}{\braketouterspace#1\hep@midvert#2\hep@midvert#3\braketouterspace}
\newcommand{\matrixel}{\matrixelement}
\newcommand{\mel}{\matrixelement}
\end{verbatim}

\textbf{\texttt{\textbackslash expectationvalue}} Define the expectationvalue and vev macros.

\begin{verbatim}
\DeclarePairedDelimiterX{\hep@expvalue}[1]{\langle}{\rangle}{\braketouterspace#1\braketouterspace}
\NewDocumentCommand{\expectationvalue}{som}{\IfNoValueTF{#2}{\IfBooleanTF{#1}{\hep@expvalue*}{\hep@expvalue}{#3}}{\IfBooleanTF{#1}{\matrixelement*}{\matrixelement}{#2}{#3}{#2}}}
\newcommand{\ev}{\expectationvalue}
\newcommand{\vev}[1]{\expectationvalue[0]{#1}}
\end{verbatim}

\textit{B Test}

\begin{verbatim}
\documentclass{article}
\end{verbatim}

13
\usepackage{hep-math}

\begin{document}
\begin{gather}
\bra{x}\ket{y}
\braket*{x}{y}\\\n\dv[f]{x}^3\n\pdv[f]{x}{y}^2[z]^3\n\fdv[f]{x}^3[y]\n\set{x \suchthat x \in X}\n\end{gather}
\end{document}

C Readme

The 'hep-math' package

Extended math macros

Introduction

The 'hep-math' package provides some additional features beyond the 'mathtools' and 'amsmath' packages.

To use the package place '\usepackage{hep-math}' in the preamble.

Author

Jan Hajer

License

This file may be distributed and/or modified under the conditions of the 'LaTeX' Project Public License, either version 1.3c of this license or (at your option) any later version. The latest version of this license is in 'http://www.latex-project.org/lppl.txt' and version 1.3c or later is part of all distributions of \LaTeX\ version 2005/12/01 or later.

References

[2] \textit{\LaTeX} Team. ‘The \texttt{amsmath} package: AMS mathematical facilities for \LaTeX’ (1994). CTAN: \texttt{amsmath}. URL: \url{ams.org/tex/amslatex}.

