The \texttt{arraycols} package* \\
Antoine Missier
antoine.missier@ac-toulouse.fr
September 13, 2023

1 Introduction

This package introduces new predefined column types for tables, in addition to the \texttt{array} package by Frank Mittelbach and David Carlisle [1]. It also includes a command for wide horizontal rule drawing. Below is a summary of the column types and macro defined by \texttt{arraycols}, which will be detailed in the following section.

\begin{center}
\begin{tabular}{|c|p{0.3\textwidth}|}
\hline
Column definitions & \\
\hline
L & Left adjusted column (applicable in LR mode for \texttt{array} environments or math mode for \texttt{tabular} environment) \\
C & Centered-adjusted column (similar to L but centered) \\
R & Right-adjusted column (similar to L but right-adjusted) \\
t{⟨width⟩} & Text column of fixed \texttt{(width) (LR mode), similar to \texttt{p}, but with horizontal and vertical centering} \\
x & Centered column in math mode with adjusted height to avoid touching the horizontal rules \\
y & Left-aligned column in math mode with adjusted height \\
z{⟨width⟩} & Centered column in math mode, similar to \texttt{x}, with adjusted height, but with fixed \texttt{(width)} \\
T & Centered text column with adjusted width for \texttt{tabularx} environments (calculated like \texttt{X} column) \\
Z & Centered column for \texttt{tabularx}, similar to \texttt{T}, but in math mode with adjusted height, like \texttt{x} and \texttt{z} \\
I & Thick vertical rule (1 pt) \\
V{⟨thickness⟩} & Vertical rule with variable \texttt{(thickness)} \\
\hline
Horizontal rules & \\
\hline
\texttt{\whline} & Wide horizontal rule (1 pt) \\
\hline
\end{tabular}
\end{center}

Note that if a column type has been previously defined by another package, using \texttt{arraycols} will overwrite it and display a warning message.

*This document corresponds to \texttt{arraycols} v1.4, dated 2023/09/13. Thanks to François Bastoul for assistance with the English translation.
In addition to loading the \texttt{array} package, \texttt{arraycols} also requires \texttt{cellspace} \cite{2}, which is necessary for the x, y, z and Z column types. Moreover it relies on \texttt{tabularex} \cite{3} for T and Z column types and loads \texttt{makecell} \cite{4} for creation of multilined tabular cells. It’s worth mentioning that the \texttt{tablestyles} package \cite{6} also defines L, C, R and Z column types, but differently. Nevertheless, \texttt{tablestyles} is incompatible with \texttt{makecell} and consequently with \texttt{arraycols} as well.

With its minimal code, \texttt{arraycols} makes no claim to develop new macros. Its purpose is to combine and configure functionalities derived from other packages.

2 Usage

Referring to an example from the \texttt{array} package documentation, the L, C and R columns types, enable the reversal of the mathematical mode. This allows to achieve centered, left-aligned or right-aligned LR-mode in an \texttt{array} environment or an equivalent math-mode in a \texttt{tabular} environment. For instance, using the declaration \begin{verbatim}$\begin{array}{|l|C|r|}$\end{verbatim} sets the second column in centered mathematical mode. Similarly, using the declaration \begin{verbatim}$\begin{array}{|L|c|c|}$\end{verbatim} sets the first column in text mode, left-aligned\footnote{The declarations L, C, R do not work in a \texttt{tabularex} environment. Additionally, the \texttt{tabulary} package by David Carlisle \cite{5} already defines the L, C, R (and J) column types for specific alignments in tables of the same type as \texttt{tabularex}. However, there is no incompatibility with \texttt{arraycols} because these column definitions apply exclusively within \texttt{tabulary} environments.}.

\begin{verbatim}$t\{\langle width\rangle\} \quad \text{horizontally and vertically centers paragraphs within the column, with a specified \langle width\rangle. In contrast, the traditional p\{\langle width\rangle\} (in standard \LaTeX) and m\{\langle width\rangle\} (from the \texttt{array} package) column types, justifies paragraphs, while text in t\{\langle width\rangle\} is centered.}$\end{verbatim}

In order to guarantee adequate row heights, especially for displaymath mode formulas, the package includes the column types x (centered) and y (left aligned). These column types activate the mathematical mode and allow automatic adjustment of row heights to prevent any overlap with horizontal rules in cases where the content is too tall, thanks to a functionality of the \texttt{cellspace} package by Josselin Noirel \cite{2}. While \texttt{cellspace} is initially designed for \texttt{tabular} environments, the new x and y column types are applicable in both \texttt{tabular} and \texttt{array} environments. Examine the following examples created using \begin{verbatim}$\begin{array}{|l|c|}$\end{verbatim} and \begin{verbatim}$\begin{array}{|x|}$\end{verbatim}.

\begin{verbatim}
\begin{tabular}{|l|}
\hline
\text{bad} \\
\hline
\text{lim}_{x \to 1} \ln \left(\frac{x^2}{x - 1} \right) \\
\hline
\text{a} \\
\hline
\int_1^X \frac{1}{t} \, dt \\
\hline
\end{tabular}
\end{verbatim}

\begin{verbatim}
\begin{tabular}{|l|}
\hline
\text{good} \\
\hline
\text{lim}_{x \to 1} \ln \left(\frac{x^2}{x - 1} \right) \\
\hline
\text{a} \\
\hline
\int_1^X \frac{1}{t} \, dt \\
\hline
\end{tabular}
\end{verbatim}
The `cellspace` package is loaded with the `math` option\(^2\) to efficiently manage row heights, including in matrices. Another option of `cellspace`, `column=Q` (with `S` being the default in `cellspace`)\(^3\), was necessary to prevent any compatibility issues with the `siunitx` package (also loaded by `pstricks-add`). The `Q` declaration serves as a “modifier” that, when placed before a column type declaration, permits the adjustment of cell height, for instance “Qc” for a vertical adjustment within a centered column type.

Notice that another package, `booktabs`\([7]\), also offers excellent row height adjustment. However, regrettably, it doesn’t handle the height of vertical separators “|”. In order to achieve a similar vertical adjustment as `booktabs`, we set the `cellspace` parameters as follows:

\[
\text{\setlength{\cellspacetoplimit}{3pt},} \\
\text{\setlength{\cellspacebottomlimit}{2pt}.}
\]

Additionally, it’s worth mentioning the `tabls` package by Donald Arneseau\([8]\) that makes a good adjustment of row heights as well, but it is incompatible with the `array` and `numprint` packages.

Finally, manual adjustments can also be achieved using the \texttt{\vstrut} command from the `spacingtricks` package\([10]\), or by utilizing \texttt{\gape} and \texttt{\Gape} from the `makecell` package\([4]\), as well as employing \texttt{\bigstrut} from the `bigstrut` package\([9]\).

The `z{⟨width⟩}` column type activates the mathematical mode and allows to define the column width, similar to `t{⟨width⟩}`. It also adjusts the row height, akin to the `x` column type. The content consist of a single line. When it becomes too wide, it may protrude to the right.

The `tabularx` package by David Carlisle\([3]\) introduces the `X` column definition, which calculates its width in relation to the required width for the entire table. It aligns text to the left similar to \texttt{p{⟨width⟩}}. For instance, using \texttt{\begin{tabularx}{8cm}{|c|X|X|}} adjusts the width of the `X` columns to achieve a total width of 8 cm. To complement this, we offer the `T` declaration, which performs a similar function but centers the content horizontally. Additionally the `Z` declaration activates mathematical mode and adjusts line heights, comparable to `x` or `z`). Here’s an example with \texttt{\begin{tabularx}{\linewidth}{|T|y|x|Z|T|}}.

<table>
<thead>
<tr>
<th>A good job</th>
<th>(\lim_{x \to 1} \ln \left(\frac{x^2}{x - 1}\right))</th>
<th>(\frac{a}{b})</th>
<th>(\frac{a}{b} + \int_1^x \frac{1}{t} , dt)</th>
<th>a multi-line piece of text</th>
</tr>
</thead>
</table>

Observe that cells 3 and 4 are not vertically centered to preserve the precise alignment of fraction bars within mathematical formulas across cells. For achieving accurate vertical positioning within the last cell, we have used the powerful \texttt{\makecell{⟨pos⟩}{⟨content⟩}} command from the `makecell` package by Olga Lapko\([4]\): \texttt{\makecell{a multi-line \ \ piece of text}}.

\(^2\)The `math` option loads the `amsmath` package. As mentioned in the `cellspace` package documentation: “the `amsmath` package can be loaded beforehand with other packages (such as `empheq` or `mathtools`), were an incompatibility to arise from one’s loading it later”.

\(^3\)The letter `Q` is a substitute for the default column modifier `S` of the `cellspace` package.
The column definition \[V\{\text{thickness}\} \] is mentioned in The \LaTeX\ Companion \cite{11} and allows for drawing a thicker vertical line (1 pt thick) compared to the one achieved with the standard declaration “|”. For selecting the line thickness, we additionally provide the column definition \[V\{\text{thickness}\}\].

Similarly, the \texttt{\whline} command, suggested in The \LaTeX\ Companion, enables the drawing of a thicker horizontal line (1 pt thick) compared to the line obtained with \texttt{\hline}. Moreover, the \texttt{makecell} package provides the command \texttt{\Xhline{\text{thickness}}} enabling the choice of horizontal rule thickness.

The introductory table has been typeset with a column declaration I serving as a separator between the two text columns. Horizontal rules at the beginning and end of the table are accomplished using \texttt{\whline}, while a \texttt{\Xhline{0.8pt}} rule is employed after the legend rows. The formatting of header rows is achieved using the \texttt{\thead} command from the \texttt{makecell} package. By default, \texttt{arraycols} sets: \texttt{\renewcommand\theadfont{\footnotesize\sffamily}} (in \texttt{makecell} it is \texttt{\footnotesize} only, without \texttt{\sffamily}). Lastly, following a recommendation of the \texttt{array} package \cite{1}, an additional 1 pt has been added to the standard height of each row within this table. This adjustment is implemented with the command \texttt{\setlength{\extrarowheight}{1pt}}\footnote{The definition of \(V \) would have been simplified by utilizing an optional argument for I, but unfortunately, this approach doesn’t function.}

\section*{3 Implementation}

\begin{verbatim}
1 \RequirePackage{array}
2 \RequirePackage{cellspace}
3 \RequirePackage{tabularx} % must be loaded after cellspace
4 \RequirePackage{makecell}
5 \newcolumntype{C}{>{$}c<{$}}
6 \newcolumntype{L}{>{$}l<{$}}
7 \newcolumntype{R}{>{$}r<{$}}
8 \newcolumntype{t}{>{\centering\arraybackslash}m{#1}}
9 \newcolumntype{x}{>{$}Qc<{$}}
10 \newcolumntype{y}{>{$}Ql<{$}}
11 \setlength{\cellspacetoplimit}{3pt}
12 \setlength{\cellspacebottomlimit}{2pt}
13 \newcolumntype{z}[1]{>{\centering\arraybackslash}p{#1}<{$}}
\end{verbatim}

\begin{verbatim}
The \texttt{cellspace} package provides the S modifier (we used Q instead), which, when placed before a column declaration, allows for the adjustment of cell content height to prevent any overlap with horizontal rules. The spacing between the content and the rules is governed by the parameters \texttt{\cellspacetoplimit} and \texttt{\cellspacebottomlimit}.

\newcolumntype{x}{>${$}Qc<{$}}
\newcolumntype{y}{>${$}Ql<{$}}
\setlength{\cellspacetoplimit}{3pt}
\setlength{\cellspacebottomlimit}{2pt}
\newcolumntype{z}[1]{>${$}Q<{$}\{\centering\arraybackslash}p{#1}<{$}}
\end{verbatim}

\footnote{As stated in the \texttt{array} package documentation: “This is important for tables with horizontal lines because those lines normally touch the capital letters”.

4
For the \texttt{z} column type, we employed the \texttt{p} declaration instead of \texttt{m} (which should automatically center content). This choice ensures proper alignment of mathematical expressions within cells of the same row. The same result can be achieved with the following definition:\newcolumntype{z}[1]{>{$}Q{W{c}{#1}}<{$}} with \texttt{W{c}} defined in the \texttt{array} package.

\newcolumntype{T}{>{\centering\arraybackslash}X}
\newcolumntype{Z}{>{$}QT<{$}}

Like \texttt{X}, the \texttt{T} columns are not vertically centered. Although it’s possible to achieve this by using the command \texttt{\renewcommand{\tabularxcolumn}[1]{m(#1)}} (with \texttt{m} instead of default value \texttt{p}), unfortunately, this approach has a global effect on all column declarations based on \texttt{X}, including \texttt{T} and \texttt{Z}. As a result, it could disrupt the alignment of mathematical expressions within cells of the same row.

\newcolumntype{I}{!{\vrule width 1pt}}
\newcolumntype{V}[1]{!{\vrule width #1}}
\newlength\savedwidth
\newcommand{\whline}{\noalign{\global\savedwidth\arrayrulewidth\global\arrayrulewidth 1pt}}
\newcommand{\hline}{\noalign{\global\savedwidth\arrayrulewidth\global\arrayrulewidth 1pt}}
\renewcommand{\theadfont}{\footnotesize{sffamily}}

\section*{References}

[1] \textit{A new implementation of \LaTeX’s tabular and array environment}, Frank Mittelbach, David Carlisle, CTAN, v2.4k revised 2018/12/30.

[3] \textit{The tabularx package}, David Carlisle, CTAN, v2.11.b 2016/02/03.

[4] \textit{The makecell package}, Olga Lapko, CTAN, v0.1e 2009/08/03.

[9] \textit{The multirow, bigstrut and bigdelim packages}, Piet van Oostrum, Øystein Bache, Jerry Leichter, CTAN, v2.4 2019/01/01.
