
AcroTEX.Net

The AeB Pro Package

Doc/Page Events & Fullscreen Support

D. P. Story

Copyright c© 2016 dpstory@acrotex.net http://www.acrotex.net
Prepared: August 3, 2016 Published: January 12, 2007

mailto:dpstory@acrotex.net
http://www.acrotex.net


Table of Contents

1. Document Actions
1.1. Document Level JavaScripts
1.2. Set Document Actions
1.3. Open/Close Page Actions

• Open/Close Page Actions for First Page • Open/Close Page Actions for the other
Pages • Every Page Open/Close Events

2. Fullscreen Control
2.1. \setDefaultFS
2.2. Page Transition Effects

3. Test
4. Exam



3

1. Document Actions

In this section we outline the various commands and environments for creating document
and page actions for a PDF document.

As you read through this section, keep the console window open to see the various page
events reporting back to the console.

1.1. Document Level JavaScripts

Creating document level JavaScript has been part of AeB for many years, use the insDLJS
environment, as documented in webeqman.pdf.

1.2. Set Document Actions

The AeB Pro provides environments for the events willClose, willSave, didSave, willPrint
and didPrint JavaScript events. Corresponding LATEX environments are created: willClose,
willSave, didSave, willPrint and didPrint. These are illustrated in the preamble of this
document.

1.3. Open/Close Page Actions

When a page opens or closes a JavaScript occurs. Predefined JavaScript can execute in
reaction to these events. AeB Pro provides several commands and environments.



Document Actions 4

• Open/Close Page Actions for First Page
Because of the way AeB was originally written—exerquiz, actually—, the first page is a
special case.

There is a command, \OpenAction, that is part of the insdljs package for several years,
that is used to introduce open page actions:
\OpenAction{\JS{%

console.show();\r
console.clear();\r
console.println("Show the output of the page actions");

}}

This command goes in the preamble to define action for the first page. This command
is capable of defining non-JavaScript action, see the documentation of insdljs for some
details.

Environments, defined in AeB Pro, but uses macros from insdljs are addJSToPageOpen
and addJSToPageClose. When placed in the preamble, these provide JavaScript support
for page open/close events of the first page. In the preamble of this document, you’ll find
\begin{addJSToPageOpen}
var str = "This should be the first page"
console.println(str + ": page " + (this.pageNum+1));
\end{addJSToPageOpen}

and
\begin{addJSToPageClose}
var str = "This is the close action for the first page!"
console.println(str + ": page " + (this.pageNum+1));
\end{addJSToPageClose}



Document Actions 5

• Open/Close Page Actions for the other Pages
The same two environments addJSToPageOpen and addJSToPageClose can be used in the
body of the text to generate open or close actions for the page on which they appear. It’s a
rather hit or miss proposition because the tex compiler may break the page at an unexpected
location and the environments are processed on the page following the one you wanted them
to appear on.

Just below this paragraph are addJSToPageOpen and addJSToPageClose environments.
Will the effects defined by these environments appear on this page or the next?

Another approach to trying to place addJSToPageOpen or addJSToPageClose on the page
you want is to use the addJSToPageOpenAt or addJSToPageCloseAt environments. These
are the same of their cousins, but are more powerful. Each of these takes an argument
that specifies the page, pages, and/or page ranges of the open/close effects you want.
These two commands can go in the preamble, but I recommend putting them just after
the \begin{document} and before \maketitle, as illustrated in this document.

The two environments take a comma-delimited list of pages and page ranges, for exam-
ple, an argument might be {2-6,9,12,15-}. This argument states that the open or close
JavaScript listed in the environment should execute on pages 2 through 6, page 9, page 11,
and pages 15 through the end of the document. Very cool!

This is all well and good if you know exactly which pages are the ones you want the
effects to appear. What’s even more cool is that you can use LATEX’s cross-referencing
mechanism to specify the pages. By placing these environments after \begin{document},
the cross referencing information (the .aux) has been input and you can use \atPage, a



Document Actions 6

special simplified version of \pageref, to reference the pages. See the verbatim listing
below.
\begin{addJSToPageOpenAt}{1,\atPage{test}-\atPage{exam}}
var str = "Add to open page at pages between \\\\atPage{test} and \\\\atPage{exam} "

+ (this.pageNum+1);
console.println(str);
\end{addJSToPageOpenAt}

In the above, we specify a range \atPage{test}-\atPage{exam}, which when expanded
becomes a range of 9-14. If the first page number is larger than the second number, the
two numbers are switched; consequently, \atPage{exam}-\atPage{test} yields the same
results.
\begin{addJSToPageCloseAt}{5-8,12,15-}
var str = "Add to close page at page " + (this.pageNum+1);
console.println(str);
\end{addJSToPageCloseAt}

Notice that in the addJSToPageOpenAt environment above, page 1 was specified. This
specification is ignored. You do remember that the first page events need to be defined in
the preamble, don’t you.

• Every Page Open/Close Events
As an additional feature, there may be an occasion where you want to define an event
for every page. These are handled separately from the earlier mentioned open/closed
events so one does not overwrite the other. These environments are everyPageOpen and
everyPageClose. They can go in the preamble, or anywhere. They will take effect on the



7

page they are processed on. Using these environments a second time overwrites any earlier
definition. To cancel out the every page action you can use \canceleveryPageOpen and
\canceleveryPageClose. The environments that appear in the preamble are
\begin{everyPageOpen}
var str = "every page open";
console.println(str + ": page " + (this.pageNum+1));
\end{everyPageOpen}

\begin{everyPageClose}
var str = "every page close";
console.println(str + ": page " + (this.pageNum+1));
\end{everyPageClose}

2. Fullscreen Control

In this section we present the controlling commands for default fullscreen mode and for
defining page transition effects.

2.1. \setDefaultFS

Set the default fullscreen behavior of Adobe Reader/Acrobat by using \setDefaultFS in the
preamble. This command takes a number of arguments using xkeyval, each key correspond
to a JavaScript property of the fullscreen object.

In the preamble of this document, I have placed \setDefaultFS specifying that the doc-
ument should go into fullscreen mode with a random transition for its default transition
effect.



Fullscreen Control 8

\setDefaultFS
{%

fullscreen,
cursor=delay,
Trans=Random,
loop,
escape

}

See the AeB Pro documentation for full documentation on these properties.

2.2. Page Transition Effects

There are two commands \setPageTransition and \setPageTransitionAt. The former
sets the transition effects for the page on which it is processed. It suffers from the same
malady as do addJSToPageOpen and addJSToPageClose, you have to hit the page you want.
The latter command is the same remedy, as illustrated below.
\setPageTransitionAt{1,\atPage{test}-\atPage{exam},7}{Trans=Blend,PageDur=20,TransDur=5}

See the AeB Pro documentation for full documentation on these properties.



9

3. Test

Hi world! Page 9



Test 10

Again, hi! Page 10



Test 11

Introducing the AeB Pro Family!



Test 12

Introducing the AeB Pro Family!



Test 13

Canceling every open page



14

4. Exam

Introducing the AeB Pro Family!



Exam 15

Introducing the AeB Pro Family!



Exam 16

Introducing the AeB Pro Family!



Exam 17

Introducing the AeB Pro Family!



Exam 18

Introducing the AeB Pro Family!

Resetting every page open this page



Exam 19

Introducing the AeB Pro Family!



Exam 20

Introducing the AeB Pro Family!



Exam 21

Introducing the AeB Pro Family!



Exam 22

Introducing the AeB Pro Family!



Exam 23

Introducing the AeB Pro Family!



Exam 24

Introducing the AeB Pro Family!



Exam 25

Introducing the AeB Pro Family!


	Table of Contents
	1 Document Actions
	1.1 Document Level JavaScripts
	1.2 Set Document Actions
	1.3 Open/Close Page Actions
	• Open/Close Page Actions for First Page
	• Open/Close Page Actions for the other Pages
	• Every Page Open/Close Events


	2 Fullscreen Control
	2.1 \setDefaultFS
	2.2 Page Transition Effects

	3 Test
	4 Exam

