Th
Joy of

Gourmet Guide
to Typesetting

withthe AMS- TEX
macro package

7 e

nt
\ \\

L'__////”’ =
e i

\ ¥

Illustrations b;/ Duane Bibby

OVof

Gourmet Guide
to Typesetting

withthe AMS-TEX
macro package

JThe

M. D. SPIVAK, Ph.D.

American Mathematical Society
Providence, Rhode Island

TEX and ApMS-TEX are trademarks of the American Mathematical Society.

Library of Congress Cataloging-in-Publication Data

Spivak, Michael David.
The joy of TeX, second ed.: a gourmet guide to typesetting with
the AMS-TeX macro package / M.D. Spivak.

p- cm.
1. TeX (Computer system) 2. Mathematics printing.

3. Computerized typesetting. I. Title.

72253.4.T475673 1990 90-1082

686.2' 25445369--dc20 CIP

ISBN 0-8218-2997-1 (alk. paper)

Reprinted with corrections by the American Mathematical Society, 2004.
Copyright (© 1990 by the American Mathematical Society. All rights reserved.

Previous editions copyright (©) 1982, 1983, 1986 by the American Mathematical
Society.

All rights reserved. Any material in this guide may be reproduced or duplicated
for personal or educational use.

For My Mother

CONTENTS

Preface . .
Acknowledgments
Personal Pronoun Pronouncement .
Introduction. On Advanced Typesetting

Part 1. Starters
Getting Acquainted; A Key Chapter

Keys available on the keyboard
Learning TEX’s Lingo .

Ordinary text and control sequences

Printers Do It With All Types .
Changing fonts

Your First TEX Experience
Running a file through TEX

TEX’s Erroneous Zones

Error messages, and how to respond to them

Spaces That Separate, Ties That Bind
Subtleties of spacing and line breaking

Doing It With Elan

Special symbols and accents

Part 2. Main Courses .
TEX’s Brand Of Mathematics
Mathematical formulas in text

Lousy Breaks? Try An Artful Display
Displayed formulas

The 27 Level Of Complexity
Superscripts and subscripts

vii

ix

. xi, xiii

. XV
. xvil

15
20
27
32
34
47
43
53

58

viii

10.

11.

12.

13.

14.

15.

16.

17.

18.

—mDQEHEgOQr >

Contents

Our Problems Mount . .
Fractions, binomial coefficients, etc.
Benefitting From TEX’s Largess
>, f and other “large operators”

Creating Your Own Space . e
Controlling spacing in mathematical formulas
Fascinating Things That Expand By Themselves .

Delimiters and other variable size symbols
A Roman Orgy

Roman type in formulas

Keeping Them In Line e e e
Numbering formulas and aligning equations in a display
Too Much Of A Good Thing

Breaking formulas that are too long

Sophisticated Positions
Matrices

Part 3. Sauces & Pickles

Practicing Self Control
Defining new control sequences

EX-Rated Features
A dictionary of special TEXniques
Appendices .

The AMS Preprint Style

Answers To All The Exercises
Bibliographies . e
Comparison With ‘plain’ TEX . . .
Deficient Keyboards

Esoteric Symbols .

Further Fonts . . .

{TEX Users}

Help

Index .

66

72

7

79

88

97

. 103

. 108

. 113
. 115

. 129

. 191

. 193
. 210
. 260
. 265
. 269
. 270
. 274
. 281
. 282
. 283

Preface to the Second Edition

The Joy of TgX is the manual for ApS-TEX, an extension of TEX, Donald
Knuth’s revolutionary program for typesetting technical material. ApS-TEX
was designed to simplify the input of mathematical material in particular and to
format the output according to any of various preset style specifications. This
manual is useful both for the technical typist and for scientists preparing their
own manuscripts. Exercises sprinkled generously through each chapter encourage
the reader to sit down at a terminal and learn through experimentation.

The first two parts of the manual “Starters” and “Main Courses,” teach the
reader how to typeset most normally encountered text and mathematics. “Sauces
and Pickles,” the third section, treats more exotic problems and includes a
60-page dictionary of special TEXniques. Scientists and experienced technical
typists will readily appreciate that ApS-TEX gives them easy control over the
appearance of a page of technical copy. Descriptions of the conventions of math-
ematical typography will help the novice technical typist. Appendices list handy
summaries of frequently used and more esoteric symbols, as well as answers to
the exercises.

This second printing of the second edition of Joy has been updated to re-
flect the changes introduced in Version 2.1 of the ApS-TEX macro package. In
Version 2.0 Dr. Spivak made many of the error and help messages clearer, and
many bugs that surfaced in special cases were eliminated. He made refinements
in some of the macros and changes to conserve memory space. In addition, he
made access to fonts other than those defined in plain TEX easier.

At the same time that Dr. Spivak was making all the technical changes in
AMS-TEX, the Society’s Technical Support Staff made extensive changes in the
AMS-TEX’s preprint style to allow for many optional formatting features and
provide users much greater flexibility. Among the new features are styles for
books, in addition to journal articles, running heads, alternate page sizes, and
tables of contents. In the first edition of Joy, many of the preprint features were
explained in Chapter 7. In this edition Chapter 7 has been moved to Appendix A.
The Technical Support Staff has revised Appendix A so that it now serves as a
complete guide to all the options available in the Version 2.1 preprint style.

American Mathematical Society
October 1991

ix

Acknowledgments for the First Edition

At about the time that I first started eyeing computers with anything less
than malevolence, my friend Richard Palais was enthusiastically investigating a
new computer typesetting program that he had heard about as a member of
the AMS Committee on Composition Technology. He suggested that I learn
something about this system and then describe it in a little manual, one that
would be oriented toward the naive user, of which I was so perfect a specimen.
Accordingly, we repaired to Stanford, where we were joined by Barbara Beeton,
Robert Morris and Rilla Thedford for a projected two-week project.

That was six years ago. Now that the official first edition of this manual
is finally appearing, numerous other people may also be named as accomplices
before the fact.

The initial stages of the project would have been impossible without the help
of all the people at the AMS, including Barbara Beeton, Sam Whidden, and
Ray Goucher. I am extremely grateful to David Fuchs, John Hobby, Arthur
Keller and Joe Weening for allowing me to pester them about arcane matters
during a five-week stay at Stanford in 1983, and to Leslie Lamport for discus-
sions about IATEX. Michael Harrison graciously helped me work on the project
at U. C. Berkeley in the summer of 1984. In the end, all this shuffling from
university to university began to take its toll, and it is doubtful whether the
project would have been completed in its present form had I not been able to
use PCTEX, from Personal TeX, Inc., on my own personal computer.

ABOVE ALL, HOWEVER, I CANNOT EXPRESS TOO MUCH GRATITUDE TO
Donald E. Knuth, the author of TgX, for his interest in the AMS macro project,
for the help that he has extended to me, and most especially for this wonderful
gift that he has given the world.

Michael D. Spivak

xi

Acknowledgments for the Second Edition

The efforts of several individuals made the Second Edition of The Joy of
TEX possible. We wish to thank Michael Spivak for his work on the ApS-TEX
macros, which are now being used for all technical AMS publications. We also
wish to acknowledge the efforts of the Society’s Technical Support Group—Ralph
Youngen (Supervisor), Michael Downes, Janene Winter, Barbara Beeton, Julie
Pomroy, and Neil Bartholomew—for their work on the revision of the preprint
style (amsppt) and on the rewrite of Joy, especially Appendix A.

American Mathematical Society

xii

Personal Pronoun Pronouncement

Which The Reader Skips At
His or Her Peril

Since TEX is a rather revolutionary approach to typesetting, I decided that a
rather revolutionary approach to non-SEXist terminology would be appropriate
in this manual. I myself am completely unprejudiced, of course. As Mark Twain
said, or should have said: All I care to know is that a man or woman is a human
being—that is enough for me; he or she can’t be any worse. But I hate having to
say “he or she” or “his or her” or using awkward circumlocutions. Numerous ap-
proaches to this problem have been suggested, but one strikes me as particularly
simple and sensible. Just as ‘I’ is the first person singular pronoun, regardless of
gender, so ‘E’ will be used in this book as the third person singular pronoun for
both genders. Thus, ‘E’ is the singular of ‘they’. Accordingly, ‘Eir’ (pronounced
to rhyme with ‘their’) will be the possessive, and ‘Em’ (rhyming with ‘them’)
will stand for either ‘him’ or ‘her’. Here is an example that illustrates all three
forms:

E loves Em only for Eir body.

eExercise PPP.1!
How many possible meanings does this sentence have?

L Answers to all the Exercises will be found in Appendix B.

XV

Introduction
On Advanced Typesetting

The title of this book is a little deceptive. It might give you wrong ideas
about the pronunciation of TEX, which actually stands for the Greek letters
TAU EPSILON CHI; according to its creator, Donald E. Knuth, insiders pro-
nounce TEX so that it rhymes with blecchhh. TgX is thus an upper-case, or
capital letter, form of 7ey, the beginning of the Greek word that means art, a
word that is also the root of English terms like technology. This name emphasizes
two basic features of TEX: it is a computer system for typesetting technical text,
especially text containing a lot of mathematics; and it is a system for producing
beautiful text, comparable to the work of the finest printers.

TEX’s official name implicitly advertises another of its advantages: traditional
typesetters would have to cast a special piece of type to get the “TEX” logo, but
TEX can print its own name simply by moving letters down a little and backing
up a bit. On your computer terminal, where such shenanigans aren’t possible,
the standard way of referring to TEX is by typing ‘TeX’. This helps to distinguish
TEX from various other computer programs that are named TEX (and prosaically
pronounced that way).

In addition to all of TEX’s capabilities, one other feature of the system needs
to be emphasized: TEX allows you to do all of these things easily. In fact, this is
a manual for someone who knows nothing about computers, written by someone
who knows nothing about computers.

Actually, that last statement isn’t quite true: the one thing we assume is that
you already know how to use a “text editor” to create a file on your computer.
Nothing about typesetting itself is assumed, although a few printers’ terms will
be introduced along the way. You can remain blissfully ignorant of the compli-
cated rules that typesetters have developed for the proper setting of mathematics
formulas—TEX knows them all. Nor is any knowledge of mathematics required.
But you will still need to have a general idea of what printed mathematics ought
to look like. Mathematicians and experienced technical typists—who already
know this—will find that TEX allows them to specify mathematics formulas
with less effort than before, yet with greater control over the finished product.
Novice technical typists have a dual task: learning what mathematicians want,
and learning how to get TEX to produce it. This manual will tell you all about
the second, and give you as much help as possible with the first.

In order to get some idea just how TEX works, we will examine a recent paper
from a non-existent journal that was typeset by TEX.

xvil

Discourses in the Obvious By the Obnoxious
Volume 43 (2001)

What Every Young
Mathematician Should Know

BY LORD K. ELVIN
ABSTRACT. We evaluate an interesting definite integral.

The purpose of this paper is to call attention to a result of which many
mathematicians seem to be ignorant.

THEOREM. The value of [e~ dx is

/ e dy = V.

— 00

Proof: We have

o0 2 o0 2 o0 2
</ e " dx) (/ e " dx) (/ e ¥ dy)
—0o0 (oo} — 00
/ / e eV dy dy by Fubini
/ / e rdrdf using polar coordinates
0

2 s} 9
/ / e " rdr} df
LJO
or [—p2 jr=o00
/ - 1 d9
2 r=0

2m '1

O 2

= T.

88

e~ (@ +y)dxdy

— 00

I
Ty

[}

(=)

[}

I
;

U

)

Remark: A mathematician is one to whom that is as obvious as that twice
two makes four is to you.

Institute For Haughty Attitudes

Received by the editors April 1, 2000.
Research supported in part by the National Foundation.

(©2001 Ameripean Mathephysical Bunch
0011-8785/01 $1.30 + $.65 per page

Introduction. On Advanced Typesetting xix

The author first wrote this paper by hand, and then, being a lazy fellow
himself, gave it to a technical typist to produce a computer file. Parts of this
file are shown below, in a style of type that will always be used to indicate
input typed on a terminal, as opposed to the output TEX will produce, or the
contents of this manual itself. Don’t worry if your keyboard lacks some of these
symbols—TEX has a way of getting around this.

\title What Every Young Mathematician Should Know\endtitle
\author Lord K. Elvin\endauthor

The purpose of this paper is to call attention to a result
of which many mathematicians seem to be ignorant.
\proclaim{Theorem} The value of

$\int_{-\infty} \infty e {-x"2}\,dx$ is
$$\int_{-\infty}~\infty e {-x"2}\,dx=

\sqrt\pi.$$

We have
$$\align
\left(\int_{-\infty}~\infty e~{-x"2}\,dx \right)"2
&=\left(\int_{-\infty}"\infty e~{-x"2}\,dx \right)
\left (\int_{-\infty}"\infty e {-y~2}\,dy \right) \\
&=\int_{-\infty}~"\infty \int_{-\infty}~\infty
e {-x"2}Ye " {-y"2}\,dx\,dy

Even a cursory examination of this file gives some idea how TEX is used. For
example, all of the English words that appear in the article are embedded some-
where in the file, while specifications for formulas are set off either by $ signs
(when the formula is set within text), or by $$ signs (when it is displayed). In
addition to the English words and the letters in formulas, there are lots of cryp-
tic combinations, called control sequences, which begin with the “backslash” \.
Some control sequences are the names of special symbols; for example, \int
stands for the “integral sign” [in the expression fix;o, while \pi stands for
the Greek letter m (pi). Other control sequences, like \title, \author and
\proclaim, are more complicated, and tell TEX how to process the input that
follows.

Once this file was produced, a few simple instructions told TEX to set the
paper in a style suitable for preprints, on a printer that quickly and cheaply
produces output suitable for proofreading, though a little blurry:

WHAT EVERY YOUNG MATHEMATICIAN SHOULD KNOW

LorD K. ELVIN
April 1, 2000
ABSTRACT. We evaluate an interesting definite integral.

The purpose of this paper is to call attention to a result of which many mathe-
maticians seem to be ignorant.

Theorem. The value of f;o e~ dx is

/ e dy = N
Proof. We have

oo 2 oo oo
2 2 2
(/ e ” d;v) = (/ e " d;v) (/ e Y dy)
o0 o0 2 2
z/ / e P e Vdrdy by Fubini

:/Oo/ e*($2+y2)dxdy

27 0o R
= / / e " rdrdf using polar coordinates
o Jo

/ ey dr} do
0

2

or [—y2 r=c0
= / - df
0 2 r=0

Il

(V]

3

1

| =

—_
QU
e

Remark. A mathematician is one to whom that is as obvious as that twice two
makes four is to you.

INSTITUTE FOR HAUGHTY ATTITUDES

Research supported in part by the National Foundation.

Typeset by ApMS-TEX

Introduction. On Advanced Typesetting xxi

Once satisfied with the reactions to his preprint, the author submitted the
paper to the journal (all he had to do was send them the original computer
file). The journal made a single change in the file that caused TEX to typeset
the paper in the journal’s style, this time on a high-resolution printing device
that produces “camera copy” suitable for printing.! Had the journal rejected
the paper, the author could have sent it (that is, the computer file) to another
journal, which could typeset it in their style, again by changing just one line.

As you can see, TEX appears to be awfully knowledgeable! Actually, the system
we have been describing is a specialized version of TEX, known as ApS-TEX.
It has been developed by the American Mathematical Society as a particularly
simple system for printing papers in a preprint style, or in the style of any journal
(with a little extra work it can also be used to typeset entire books). The present
manual is devoted entirely to the specialized system ApS-TEX, although we will
often refer to it familiarly as TEX, and adopt the more formal name only when
we want to mention a feature of TEX that is peculiar to ApMS-TEX.

Despite its specialized nature, Ap(S-TEX will do almost anything that a math-
ematician will ever need. Parts 1 and 2 of this manual explain how to typeset
almost all the mathematics you will normally encounter; Part 3, which you can
peruse at your leisure, describes AAMS-TEX's abilities to handle more exotic type-
setting problems. Parts 1 and 2 also contain occasional digressions into more
specialized material; these side-trips are set in separate paragraphs that begin
with the road-sign g%

Parts 1 and 2 of this manual occupy over 100 pages, but you needn’t fear that
AMS-TEX is particularly complicated, or difficult to learn. In order to make
this new experience with typesetting more pleasurable, the introduction has
purposely been made easy-going rather than concise. Moreover, the exposition—
such as it is—has been supplemented by numerous Exercises, interspersed with
many examples of what the author seems to think are jokes, along with puns,
innuendos, and other fossil evidence of literary low-life. You can skip any jokes
you are unfortunate enough to notice, but please don’t skip the Exercises! An-
swers to all the Exercises are given in Appendix B, and they often mention little

INowadays nearly all printing is done by photo-offset—the ink adheres to a thin piece
of metal that has been chemically treated by a photographic process. Until the advent of
computer-run photo-typesetting processes, these plates were made by first setting metal type
and printing one copy, which was used for the photographic process—and then destroying the
original type!

xxii Introduction. On Advanced Typesetting

details that didn’t seem to fit in comfortably anywhere else, but it is strongly
recommended that you first try all the Exercises yourself—that way you’ll learn
far more effectively than by reading passively.

When you have finished all the Exercises, you may consider yourself an accom-
plished ApS-TEX user. Then you might be interested in learning more about
TEX itself.! ApS-TEX is just a specialized version of TEX, but once you have
mastered it you will have joined the TEXnical revolution.

IEverything about TEX is explained in The TEXbook, by Donald E. Knuth, published jointly
by the American Mathematical Society and Addison-Wesley Publishing Company.

RS

\ p“?",’"‘rm
Y

277

“ A

Starters

the basic ingredients

Chapter 0. Getting Acquainted; A Key Chapter

Before we start learning about TEX’s approach to typesetting, it’s a good idea
to take a look at the keyboard of your terminal, to see which symbols are already
available there. Many terminals have additional special keys, but at least the
following symbols should all appear—exceptions are discussed below.

First we have the upper- and lower-case letters, and the numerals:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
0123456789

You're probably already aware of the fact that the numeral 1 has to be distin-
guished from the lower-case letter 1, and that the numeral 0 has to be distin-
guished from the upper-case letter 0. On the screen 0 and 0 may look almost the
same, but on the keyboard the numeral 0 will be close to the other numerals.

Next we have the symbols

? !

> (apostrophe or single right quote) ¢ (single left quote)
) [1
/ (slash) - (hyphen) * (asterisk)

which are used for punctuation, for writing numbers like 1,376.0003, for hyphen-
ation and/or word-building, and for parenthetical remarks [possibly in brackets
instead of parentheses]; on most fonts the asterisk prints high* to serve as an indi-
cator for footnotes. On your keyboard and screen, the quote marks ¢ and ’> might
appear in the less aesthetically pleasing forms ~ and ~. Don’t feel deprived—
TEX will still set them the right way. All terminals also have a double quote
mark " (or ”), but it hasn’t been listed in this group because TEX has its own
method for producing double quote marks. Notice that the hyphen - shouldn’t
be confused with another key that appears on most keyboards, _ (underscore or
underline).

*Like this.

4 Chapter 0. Getting Acquainted; A Key Chapter

Next come the few standard keyboard characters that will be used in mathe-
matical formulas:

+ = < > |

The symbol | may appear broken, as |, but TEX will always set it solid. TEX has
control sequences to name all the other mathematical symbols, including letters
from foreign alphabets. Of course, English letters and numerals are also used in
mathematics formulas, and most of the punctuation symbols are used as well.
For example, / is used in fractions like a/b, and the hyphen will be used for the
minus sign in formulas like x — y. However, TEX will use different spacing rules
in mathematics, and the minus sign prints differently than a hyphen. Moreover,
letters are normally italicized in formulas.

The fourth group of symbols that normally appear on every keyboard includes
the following:
N { Y $ & # % @ - -~ "

Each of these symbols has a special usage in ApS-TEX; for example, as we
mentioned in the Introduction, all control sequences begin with the “backslash”
character \, while $ signs or 3 signs are used to set off mathematics formulas.

There is one further symbol that most users tend to overlook: pressing the
space bar produces a symbol that appears blank on the screen. We will use the
symbol

U

whenever it is necessary to emphasize that the blank space has been entered.

There are two other keys that we should also mention explicitly. The first is
the (carriage-return) key, which moves the cursor down to the beginning of the
next line. Pressing (carriage-return) twice in succession produces a blank line on
the screen. The other is the key labelled TAB. This key moves the cursor over
a certain number of spaces on the screen, although it actually enters a single
specific character into the file. TEX treats the TAB key exactly like a space.

Exceptions. Some of these symbols may be difficult, or even impossible, to obtain
on your terminal, so TEX has control sequences that can be used instead. For
example, the left quote ¢ often doesn’t make it onto the keyboard, but you can
use \1q for ¢ (and \rq for ’). There are also control sequences that can replace

Chapter 0. Getting Acquainted; A Key Chapter 5

the symbols |, [, 1, ©, _ and ~. They will be introduced as needed, and a
complete survey is presented in Appendix E.

Of course, none of these substitutions will do you much good if you are also
missing the \ key! And TEX relies heavily on the curly braces { and }, which
have a special role, and can’t be replaced by control sequences either. Actually,
even if \, { and } are missing from your keyboard, all is not lost, because TEX
can be changed so that some other keys will serve instead. But such modifica-
tions require a little TEXpertise, and should be done in some consistent way by
everyone who encounters these problems, to minimize confusion when TEX files
are moved from one machine to another.

If you have such problems—or even if you don’t—you will probably want to
join TUG, the TEX Users Group, to get acquainted with other people who are
using TEX. Information about joining the TEX Users Group will be found
in Appendix H.

Chapter 1. Learning TgX’s Lingo

Although TEX is especially well suited for typesetting books and papers that
contain lots of mathematics, it also does a superior job of typesetting ordinary
text. In Part 1 we will be concentrating almost exclusively on text that does not
involve the peculiarities of mathematical formulas. This will give us a leisurely
opportunity to become acquainted with TEX’s special language, and to learn how
it handles the numerous peculiarities with which our literary friends like to deal.

When you want to use TEX to set ordinary text you basically just type in what
you want to come out, and let TEX worry about all the details. For example,
suppose that you enter the following in your file:

This is the first paragraph of
a 1,000 word document
that has been set by TeX. The lines are
automatically justified, i.e., they are
all set to the same length.

To do this, TeX
inserts extra space between words,
and/or hyphenates words that are
too long to fit on the line. (But it
can’t correct your errors.)

Now let’s get down to the nitty-gritty: how
did TeX know that it was supposed

to begin a new paragraph here? Come, come,
you really should be able to figure that
out for yourself!

Using this input file, TEX will produce output like the following;:

This is the first paragraph of a 1,000 word document that has
been set by TeX. The lines are automatically justified, i.e., they are
all set to the same length. To do this, TeX inserts extra space between
words, and/or hyphenates words that are too long to fit on the line. (
But it can’t correct your errors.)

Now let’s get down to the nitty-gritty: how did TeX know that
it was supposed to begin a new paragraph here? Come, come, you
really should be able to figure that out for yourself!

Chapter 1. Learning TgX’s Lingo 7

Notice that the input lines can be of any convenient size; TEX automatically
arranges them in paragraphs, with all lines made equally long. Similarly, extra
spaces between words have no particular significance for TEX; when a sequence
of spaces appears in the input file, TEX simply ignores all the spaces after the
first one. The (carriage-return) at the end of a line also tells TEX to insert a
space, and TEX then ignores any extra spaces that occur at the beginning of the
next line—so the five spaces at the beginning of the line

uuuuuTO do thiS, TeX

were completely ignored. (That would be true even if the spaces had been
inserted by the TAB key, since TEX normally treats TAB exactly like a space.)

To the virtuoso typist, some of these features might seem unnecessary, or even
downright perverse. But once you start getting serious with a text editor, and
begin using it to make corrections—to insert and delete words, and to move
whole sentences around—you’ll appreciate the fact that you don’t have to worry
about any extra spaces that might creep in.

The number of spaces after punctuation marks is likewise irrelevant. Typists
usually leave two spaces after the punctuation marks ., :, ? and !, but such
niceties are irrelevant to TEX, which uses its own judgment for the spacing after
punctuation. However, if you leave no space at all, then TEX also leaves no
space, so that you can get expressions like “1,000” and “i.e.,” in the output. On
the other hand, the space between (and But was a bad mistake, which caused
an unwanted space in the output. TEX essentially set “(” as a one-letter word,
and since this “word” happened to come at the end of a line, it was torn apart
from the word “But”, which came at the beginning of the next line.

e Exercise 1.1:
The input file for this book contains the lines

First we have the upper- and
lower-case letters, and the numerals:

What would have happened if the following had been typed instead?

First we have the upper-
and lower-
case letters, and the numerals:

And what if the following had been typed?

First we have the upper- and lower-case let-
ters, and the numerals:

8 Chapter 1. Learning TgX’s Lingo

Since multiple spaces at the beginning of a line won’t begin a new paragraph,
TEX has a simple alternate device to indicate paragraphing, which you have
probably already figured out: TEX ends a paragraph when it encounters a blank
line—and starts a new paragraph as soon as it sees the next thing to be printed.
Of course, a blank line on the screen might really be a line like

W[}

consisting of three blank spaces; in fact, it is easy to end up with such lines when
you use a text editor to delete all the visible portions of a line. Fortunately, TEX
will interpret such a line as a “blank line” also. You can also leave several blank
lines in a row at the end of a paragraph—TEX will simply count them all as one
blank line.

TEX also has a simple device to get all 4 varieties of quotation marks that you
will need for ordinary text. To get single-quote marks you just type single-quote
marks: the input ’> produces ’ and the input ¢ produces ‘. And to produce
double-quote marks, you simply type two single-quote marks of the appropriate
kind immediately in succession. The input

‘‘Oh, so that’s how the letter ‘A’ is produced!’’

produces

“Oh, so that’s how the letter ‘A’ is produced!”

Remember that you can use \1q for ¢ and \rq for ’ if you are missing these

keys; and \1q\1lq and \rq\rq give the desired double-quotes.

In addition to single- and double-quote marks, text often contains dashes—as
in sentences like this one. A dash is not the same as a hyphen or a minus sign.
In fact, carefully printed mathematics books have hyphens, minus signs, and two
kinds of dashes,

an en-dash — and an em-dash —

(traditionally, an em-dash was the width of a capital M, while an en-dash was
half that width). En-dashes are used for number ranges, like “pages 13-34”,
and also in contexts like “Fig. A—12”. Em-dashes are used for punctuation in
sentences—they are the kinds of dashes to which the author of this manual has
apparently become addicted. These different symbols can be produced as follows:

for a hyphen, type a hyphen (-);
for an en-dash, type two hyphens (--);
for an em-dash, type three hyphens (---).

Chapter 1. Learning TgX’s Lingo 9

Dashes, like hyphens, usually have no spaces on either side of them, so don’t
inadvertently put any into the input file. As we have already mentioned, a
hyphen will automatically be turned into a minus sign when it is used between
the $ signs that indicate mathematics formulas; in this case you won’t have to
worry about spaces, because TEX’s own mathematics spacing conventions will
take over.

e Exercise 1.2:
Explain how the following should be typed in a TEX file:

E said, “I still type two spaces after a period—I just can’t break
the habit—but I'm always careful to use an en-dash rather than a
hyphen for number ranges like ‘480-491’ in a bibliography.”

e Exercise 1.3:
What happens if you mistype -- - instead of -—=-? What do you think happens
if you type ——--7

In addition to quote marks and dashes, in all their variety, occasionally you
may need some special symbol, like ‘q’, which is sometimes used to signal a
paragraph. For example, we might like to number the paragraphs of our sample
text as a, b, and so forth:

€a. This is the first paragraph of a 1,000 word document that has
been set by ...

€b. Now let’s get down to the nitty-gritty: how did TeX know
that it was ...

We can do this by typing

\P a. This is the first paragraph of

\P b. Now let’s get down to the nitty-gritty: how

\P is one of TEX’s many “control words”. A control word is a combination
consisting of the “backslash” character \ followed by any number of letters. The
backslash \ tells TEX that what follows is not some text to be set, but the name
of a symbol, or some other special command.

Notice that the input \P a has a space after the \P. This space is essential,
because if we omitted it TEX would think that we were trying to use a control

10 Chapter 1. Learning TgX’s Lingo

word named \Pa. But the space doesn’t show up in the output ‘9a’; TEX always
regards the spaces after a control word simply as an indication of where the name
of the control word ends, not as a space to be typeset. Actually, the name of a
control word doesn’t always have to end with a space; it can also be terminated
by any other non-letter. For example, if we wanted to number our paragraphs
91, 92, etc., we could type \P1, \P2, etc. (Since spaces after control words never
appear in the output, you can also type \P 1, \P 2, with the same output ‘q1’,
‘q2’; so you can always put a space at the end of a control word, if you don’t
want to bother anticipating what sort of symbol comes next.)

Although we didn’t mention it before, TEX also has a control word to indicate
the end of a paragraph. If we typed

too long. (But it can’t correct errors.) \par Now let’s

get down ...
then the words “Now let’s ... ” would have begun a new paragraph, just as if
Now let’s ... were preceded by a blank line. In fact, a blank line has exactly

the same significance in TEX’s mind as the control sequence \par—when TEX
sees a blank line, it simply pretends that \par had been typed.

The blank line convention is basically an added convenience for the typist—it’s
a lot easier to hit (carriage-return) twice than to type \par. But the blank lines
also make your input file a lot more readable. Remember that after the document
has been printed the first time, there are sure to be some changes, so you're
going to be searching through that file again. Then you’ll appreciate the fact
that the file has been divided into convenient chunks. ALWAY S PLAN AHEAD!

e Exercise 1.4:
What happens if you type \Par instead of \par?

e Exercise 1.5:
What happens if your file has the following?

. end of first paragraph.\par

S]]}
The second paragraph begins here ...

The control word \par isn’t used very often, because of the blank line con-
vention, and \P isn’t used very often either, since § signs are rather unusual.
But there’s one special symbol that you will need if the author is so crass as
to mention money (actual dollars and cents). Suppose that we want to end our

Chapter 1. Learning TgX’s Lingo 11

little document, a bit shy of its advertised 1,000 words, with a final paragraph:
$1.95 (cheap!) is the price of this document.

Typing
$2.00 (cheap!) is the price of this document.

would be a big marketing mistake, but it would be an even worse TEX error,
because the $ sign tells TEX to start setting a math formula. TEX would start
setting the weird formula 2.00(cheap!)isthepriceo fthisdocument. and then com-
plain that it never found the second $ sign to tell it where the math formula
ends! Since the $ sign has the special role of indicating math formulas, we need
a different way of naming a printed $ sign. One possibility would be a control
word like \dollar, but TEX has a shorter, and much more obvious, name—the
combination \$. Using \$ we can type our final paragraph as

\$1.95 (cheap!) is the price of this document.

Note that \$ is not a control word—control words must contain only letters
after the \ —but is instead what is called a “control symbol”. A control symbol
consists of \ followed by a single non-letter (so there is never any ambiguity
about where the name of the control symbol ends). Examples of other possible
control symbols are \1, \:, \+ and even \\.

Control words and control symbols are known collectively as “control se-
quences”, and this is the term we will normally use, since there will seldom
be any need to distinguish between the two. There is, however, one important
way that control symbols differ from control words. We've seen that TEX always
ignores spaces after control words, since a space is usually needed just to indicate
the end of the control word. But a space after a control symbol is not ignored
(this arrangement seems to concur with the expectations of most typists). So if
you typed

\$ 1.00

you would get ‘$ 1.00’, with a space after the $ sign.

Which brings up an interesting point. What happens if you want a space
after a control word—how do you get output like ‘9 1’? It won’t help to type
\P_1, with two spaces after the control word \P, since TEX always treats a
whole sequence of spaces as just a single space. What we actually need is a new
control sequence to stand for a space! A reasonable candidate might be the
control sequence \space, but again TEX has a much shorter and (once you think
of it) more obvious solution. When you need to tell TEX explicitly that you want
a space, just use the combination \, (that is, \ followed by a blank space). Thus
we can type \P\ 1 to get the output ‘q 1°.

12 Chapter 1. Learning TgX’s Lingo

¢ Exercise 1.6:
Explain how to type the following sentence:

Most people can print ‘$$’ passably, but it’s harder to print U.S.
$$ that are passable.

e Exercise 1.7:
AMS-TEX, unconstrained by false modesty, provides you with the control se-
quences \TeX and \AmSTeX, to produce the ‘TEX’ and ‘ApS-TEX logos. Explain
how to type the following sentence:

AMS-TEX is just a specialized version of TEX, but once you have
mastered it you will have joined the TEXnical revolution.

e Exercise 1.8:
What output is produced by \$\,\11.00 and by \$,\,1.00?

Notice that \, is a control symbol—it consists of \ followed by a non-letter.
Having solved the previous three exercises, you should already be adept at using
it, but if you try to figure out what happens when you type

\uu

you might be a little disconcerted, because we actually have two conflicting rules.
A space after a control symbol is not supposed to be ignored, so we should get
\vu followed by another space, and thus two spaces. But we also have the general
rule that TEX treats a sequence of spaces as a single space, so our input should
be equivalent to \.,, giving just one space. For this special case TEX goes along
with the latter rule: _, is the same as \..

By now we’ve learned quite a lot about getting things into print:

(1) Multiple spaces count as a single space, as does a (carriage-return).

(2) Blank lines indicate the end of a paragraph.

(3) ¢ and ’ give single quotes, ‘¢ and ’’ give double quotes, -- gives an
en-dash and --- gives an em-dash.

(4) Special symbols and instructions are produced by control words (e.g., \P,
\par) and control symbols (e.g., \$, \L), known collectively as control
sequences. Spaces are ignored after control words, but not after control
symbols, except that _, is the same as \,.

As every prominent person knows, however, sometimes the real problem is
keeping things out of print. TEX uses % as a special device to help you do this—
when TEX sees the character % on a line of input text it ignores that % together

Chapter 1. Learning TgX’s Lingo 13

with everything else that comes after it on that line. This allows you to insert
“comments” into your file—material that will be omitted in print (even spaces,
if you're not careful). For example, if you type

material that will be ommitted %Check spelling of ommitted
% it would be embarrasing to have it mispelled in the manual
in print (even spaces, if you’re not careful).

you will get
material that will be ommitted in print (even spaces, if you're not careful).

If you aren’t careful, and type

material that will be ommitted) Check spelling of ommitted
% it would be embarrasing to have it mispelled in the manual
in print (even spaces, if you’re not careful).

you will get something much worse than a spelling error:
material that will be ommittedin print (even spaces, if you're not careful).

That’s because the % causes TEX to omit everything after it, including the
(carriage-return).

Although this feature of % necessitates some extra care, you can also use it to
advantage, in order to split a long word into two lines on the input file without
splitting it in the output: The input

the longest English word pneumonoultramicroscopich
silicovolcanoconiosis

will give you the longest English word pneumonoultramicroscopicsilicovolcanoco-
niosis in the output (hyphenated, if necessary). And if you get to an em-dash
near the end of an input line—which frequently happens—you can use % to avoid
an unwanted space:

if you get to an em-dash near the end of an input line---9
which frequently happens---you ...

You can “comment out” a large amount of text by putting % in front of each line.
But ApMS-TEX also provides a much more convenient mechanism for this, which
is explained in Part 3.

14 Chapter 1. Learning TgX’s Lingo

@ When the control symbol \, occurs at the end of a line it looks a little strange,
since you can’t actually see the final space:

I don’t like the idea of putting all those \P\
signs at the beginning of paragraphs.

I like to put an innocent % at the end to make the \, stand out:

I don’t like the idea of putting all those \P\ %
signs at the beginning of paragraphs.

These final % characters can also prevent confusion when files are transferred between
machines, since ., symbols at the end of a line are sometimes discarded during this
process. The way TEX is set up, this really shouldn’t matter, but with % at the end
you don’t even have to think about the possibility.

Chapter 2. Printers Do It With All Types

Our experiments with the control word \P and the control symbols \$ and \,
were useful in teaching us the subtleties involved in the use of control sequences,
but of course what we all really want to know about is italic print, though you’ve
surely noticed that in this manual we tend to favor slanted print, a rather recent
innovation (for extra emphasis we resort to boldface print). You can change to
these fonts by using the control sequences \it, \s1 and \bf; the control sequence
\rm returns you to ordinary (roman) type. Thus, the input

Don’t confuse \it emphasizing \rm something
with boldly \bf asserting \rm it.

produces the output

Don’t confuse emphasizing something with boldly asserting it.

Simply by changing \it to \sl in the above example, we could get the word
“emphasizing” to be set in slanted type, rather than in italics. And you’ll be
happy to learn that if ApS-TEX happens to be setting text in a different type-
size, as in a footnote, it will automatically choose the proper size type for the
italic, slanted, or bold font. Despite these amenities, you might resent having
to include all the extra \rm instructions. They’re certainly a nuisance to type,
and an omission can be disastrous—you might end up with pages and pages of
italicized words instead of just one! Actually, there’s a way of switching fonts
that doesn’t require the extra \rm instructions and that is much better for most
purposes. Use the input

Don’t confuse {\it emphasizing} something
with boldly {\bf asserting} it.

The braces { and } tell TEX that {\it emphasizing} and {\bf asserting}
are separate “groups” within the ordinary roman type. When TEX sees the left
curly brace { that starts a group it makes a mental note of the type font that
was being used, and it reverts to that same font once it sees the } that ends the
group—the right curly brace } “turns off” the \it command.

15

16 Chapter 2. Printers Do It With All Types

Of course, if you forget the closing } that turns off the \it command, you’ll
still get pages and pages of italic type. And forgetting closing }’s can have even
more dire consequences in some situations. You can avoid these problems if you
have a computer terminal with extra keys that can be programmed to produce
any sequence of input, or a text editor that can be customized so that a single
key stroke (usually some control key) can have the same effect. You can arrange
for a single key stroke to produce input like {\it } and also move the cursor back
before the }; then you just have to type in the text you want to be italicized and
skip past the } when you are finished. This saves a bit of typing, and virtually
guarantees that you won’t forget the closing }.

Because of the way braces turn off TEX’s activities, grouping is also useful in
many other situations. For example, when we wanted to get the output ‘q a’,
with a space after the §, we previously typed \P_a. But we could also have
typed {\P} a. Now the control word \P is followed by } rather than a space,
and the space that follows the } isn’t ignored. In order to pull this trick we’ve
put \P into a group all by itself, but that doesn’t matter—this is simply a group
in which nothing particularly interesting happens.

Actually, there’s yet another way to use braces to get ‘q a’, which might seem
even trickier. You can type

\P{} a

using an empty group: the {} combination is a group of no characters, so it
produces no output, but it still intervenes between \P and the space, thereby
aborting TEX’s mission to search out and destroy extra blank spaces. The empty
group {} may seem like a cheap trick, but it has lots of neat uses in math
formulas, and is sometimes almost indispensable.

e Exercise 2.1:
Redo Exercise 1.7 in 2 different ways, both without using the control symbol \,.

As a final grapple with grouping here are two rather technical exercises de-
signed more to make you think about the issues than to illustrate problems that
are very likely to come up.

e Exercise 2.2:
What output would be produced by {\P_ }u {.}{ }a?

e Exercise 2.3:
What can you type if you want the output to contain two hyphens in a row?
(You can’t type —=-, but there are many possible solutions.)

Chapter 2. Printers Do It With All Types 17

In our discussion of italic and slanted type we skipped over one detail that
might have been more noticeable if we had looked at a different transition from
italic to roman type. Notice that the space after “different” in the previous
sentence seems to be too small, because the ¢ slants over into that space. This
wasn’t as noticeable in our previous examples, because an italic g slants over
much less than an italic . The amount that a letter slants over is called its
“italic correction”, and TEX allows you to insert this extra amount of space
simply by typing the control symbol \/ after the letter. Thus the proper way to
get a different transition from italic to roman type is to type

. a {\it different\/} transition from ...

As a general rule, use \/ after a group of words in a slanted font unless the next
symbol is a comma, or a period.

e Exercise 2.4:

Explain how to type the following:

The Joy of TEX explains how to put things in the file that will be
ommitted [sic] in print.

(If you don’t have [and] you can use \1brack and \rbrack instead.)

e Exercise 2.5:

What’s the preferred way to type the following sentence to TEX?
Italicizing just one word or even the prefix or suffix of a word is
fine, but don’t go overboard.

e Exercise 2.6:
Explain how to typeset the following:

Most grammarians say that punctuation after a word should be in
the same font: but many writers prefer to switch back; this is
especially true when the punctuation is a semi-colon.

e Exercise 2.7:
What nasty mistake could you make in typing the following sentence?

Notice that the space after “different” seems to be too small here.

e Exercise 2.8:
Explain how to type the following bibliographic reference:

W. Ambrose, Higher order Grassmann bundles 3 (1964), 199-238.

The answer to Exercise 2.8 might startle you at first, until you get used to the
idea that within a group you can do the same sorts of things that you do outside

18 Chapter 2. Printers Do It With All Types

the group. In fact, you can even put a group inside another group. When we start
typesetting mathematics formulas we will be doing this with perhaps alarming
frequency, but for now just bear the possibility in mind for the following.

e Exercise 2.9:
Ezxplain how to typeset a roman word in the midst of an italicized sentence.

Even with all the possibilities afforded by italic, slanted and boldface type,
there’s always the enthusiast who wants to use underlined words. TEX doesn’t
provide you with a convenient method of underlining—you can’t type something
like {\ul ...} to underline a whole group of words. If a book designer wanted
to use underlining extensively, E would have to design a special ‘\ul’ font in
which each letter has an underline as part of it; of course, the letters g, j, p,
q and y would be one of Eir design problems. TgEX does give you a way to
underline individual words, however. If you type \underbar{problems} you
will get problems, which shows one solution to these problems.

Barring unusual circumstances, \underbar’ing isn’t very important. But it
is important to observe the way that the curly braces are used in the input
\underbar{problems}, because \underbar acts differently from the control se-
gences we have learned about so far. The control sequences \P, \$, \,, and \/
indicate special symbols or certain amounts of space, and the control sequences
\par, \it, \s1 and \bf tell TEX to alter its activities (end a paragraph or change
to a different font), but \underbar tells TEX to process a certain amount of in-
put in a special way. In TEXnical jargon, \underbar is a “control sequence with
an argument”, the “argument” being the amount of input that receives special
processing. If we were to type \underbar doesn’t then we would get the output
“doesn’t” because TEX would think that the single character d was the argument
of \underbar: when the argument of a control sequence consists of more than
one character, you must enclose the argument in braces, to tell TEX that the
whole group is the argument.

Most of the other control sequences that we will be learning about also tell
TEX to do something special to some particular amount of input. In fact, so
many of TEX’s control sequences are control sequences with arguments that
novice TEXnical typists sometimes forget that \it, \s1 and \bf are different. A
common error is to type

. italicize just \it {one} word in a sentence.
expecting to italicize just one word. What happens instead is quite different! The

braces around {one} have no effect at all. The control sequence \it simply tells
TEX to start using italic type, and the word “one”, together with all succeeding

Chapter 2. Printers Do It With All Types 19

words, are italicized. When you type things correctly, as
italicize just {\it one\/} word in a sentence.

the instruction to use italic type is limited to the group {\it one\/} in which it
occurs. To keep from making such mistakes, it might help to mentally pronounce
\it as “switch to italics”. (Of course, you won’t have any problems if you’ve
arranged for a single key stroke to produce {\it }.)

¢ Exercise 2.10:
Typeset the following:

When a sentence is typeset in slanted type, you might want to
underline a roman word for emphasis.

Now it’s time to take what we’ve learned and see what TEX really does with
our input file. Throughout Chapter 1 and this chapter, it’s been assumed that
you've been doing all the problems, and checking your answers with those in
Appendix A. The final exercise of this chapter is somewhat different, because it
calls for the creation of a computer file, which we will actually submit to TEX,
in the next chapter.

On most computers, file names have two parts separated by a period, like
‘file.ext’, where the part after the period is called the “extension”. Assuming
that this is true for your computer, the file that you create for this final exercise
should be called ‘paper.tex’. It really isn’t important for the first part of the
file to be called ‘paper’, but the second part, the extension, should be ‘tex’. (If
the file names on your computer system don’t conform to this pattern, consult
your system’s experts for additional details.)

e Exercise 2.11:
Make a computer file ‘paper.tex’ that TEX will use to print the following:

Everyone will be happy when TEX finally arrives, and Dr. Treemunch
can start typing his own so-called scholarly manuscripts. His last opus—
which The Amer. Jour. Recr. Drugs recently published—created quite
a sensation, particularly the material that he has expounded on pages
22-23. Including this material cost an extra $1,000, but it did make qq
1 and 2 quite popular.

The head of the department, our university’s own I. M. Stable, at-
tributes Treemunch’s recent aberrant behavior to the much-publicized
“research” for his paper; notwithstanding, others say that Treemunch’s
name isn’t on the computers’ databases, so his name often gets hyphen-
ated quite strangely, which may account somewhat for his feeling of
being ill-used.

Chapter 3. Your First TEX Experience

Although we’ve only covered the rudiments of TEXspeak, it’s time to take a
little break, lie back, and let the computer do some work. At the end of the
last section you produced a file paper.tex. Now we’ll ask TEX to process it
and see what happens. We will spell out the various steps of this process in
considerable detail, but it will definitely help if you follow along on your own
terminal. Before doing this, however, be sure that you have the right input for
paper.tex, by checking with the answer for Exercise 2.11.

It should be noted that the precise details involved in running TEX depend on
the particular operating system you are using. [Because of the heavy demands
that TEX may place on the computer’s capabilities, your system might even re-
quire that TEX jobs be done in batch mode.] The local experts at your computer
installation will be able to tell you about such things.

Before we begin, we need to add a few things to the file paper.tex, which is
not yet in a suitable state to be submitted to ArS-TEX. To prepare it properly,
first add the lines

\input amstex
\documentstyle{amsppt}

at the very beginning of the file. The first line tells TEX to read in a file that
tells it about the special features of ApS-TEX. The second line specifies a
certain style for the output (the desired page size, typeface, and so forth); we’ve
requested a workaday style called ‘amsppt’, the “AMS preprint style”. If we had
typed

\documentstyle{bul}

then we would have instructed TEX to print things in the ‘bul’ style, the style
of the Bulletin of the American Mathematical Society.

(Notice that in the first line we didn’t say \input{amstex}. The instruction
\input is one of TEX’s fundamental control sequences, and TEX knows that its
argument is simply everything up to the first space or {carriage-return). For
TgXnical reasons, \input works in a special way—braces around amstex are
not only unnecessary, they are actually wrong! Fortunately, \input is the only
exceptional control sequence of this sort that you will ever have to worry about.)

20

Chapter 3. Your First TpX Experience 21

Normally a paper will have things like a title and the author’s name at the
beginning. Such material would be specified right after the \documentstyle
line. Ignoring such frills for the moment, we will simply instruct TEX that the
body of the document follows immediately, by adding the line

\document

So now the text proper starts on line 4. Finally, at the very end of the file, add
the line

\enddocument

As you may have guessed, this tells TEX that the document is over, and brings
everything to a screeching halt—anything on succeeding lines will be ignored.

Now that the file paper.tex has been completed, you can leave the editor.
Once again you are in communication with the operating system. It has given
you a prompt sign—to be specific, let’s say it’s the symbol @—and now we’re
ready to go!

First you have to ask the operating system to run TEX. To do this, you type
TeX or tex or run tex, or something of that sort. After it has been invoked
by the proper incantation, including the (carriage-return) at the end of the line,
TEX will sign on with a message such as

This is TeX, Version 3.0 (preloaded format=plain 90.6.1)
*k

The ** is TEX’s way of asking you for the name of the input file you want it to
process. At this point you can type paper. (Before typing the (carriage-return)
after paper you can probably correct any typing errors with the DELETE key,
or whatever other key you usually use.) Notice that we merely have to type
paper to process the file named paper.tex; TEX assumes that the file has the
extension tex unless another extension is explicitly given.

On many systems this two-step process has a short-cut: typing

tex paper

after the @ prompt will have the same effect. Whichever method you use, as soon
as you press the (carriage-return) after paper, TEX will begin to process the file

22 Chapter 3. Your First TpX Experience

paper.tex and something like the following will appear on your screen:

(paper.tex (amstex.tex)
AmS-TeX - Version 2.0

COPYRIGHT 1985, 1990 - AMERICAN MATHEMATICAL SOCIETY
Use of this macro package is not restricted provided
each use is acknowledged upon publication.

) (amsppt.sty
AMSPPT.STY - Version 2.14)
(amssym.tex))

Overfull \hbox (9.63954pt too wide)
\tenrm notwith-stand-ing, oth-ers say ... databases,

[1]

The first line tells you that TEX has begun to read paper.tex and that the
instructions in this file have caused it to first read the file amstex.tex, where the
special features of ApS-TEX are stored,! and then to read the file amsppt.sty
where the details of the amsppt style reside. TEX may appear to be quite sluggish
as it prints out this line, because reading in files involves interacting with the
operating system. You will also notice another file that is read that you did
not knowingly as TEX to read, amssym.tex. This file is automatically read by
amsppt and is explained in more detail in later chapters.

Once TEX has finished reading in the files, it will probably print out the next,
more mysterious lines, quite quickly:

Overfull \hbox (9.63954pt too wide)
\tenrm notwith-stand-ing, oth-ers say ... databases, |

These lines seem to be saying that something is wrong, but we’ll have to wait
until we see the output in order to decipher them.

1Some computer installations may have a separate amstex program, in which the special
features of ApMS-TEX have already been added to TEX. If you use such a program you won’t
need the initial \input amstex line, and it will essentially be ignored if you do have it.

Chapter 3. Your First TpX Experience 23

Next comes [1], which tells you that ApS-TEX has processed enough of your
file to make one page, which has been numbered “1”; no other numbers appear
since the whole paper fits on one page.

At this point TEX has constructed, and placed in your directory, a new file
called paper.dvi. This is a device-independent file that can be used, with suit-
able supplementary programs, to drive whatever printing device your computer
uses to get the hard copy. In fact, something like

Output written on paper.dvi

has probably also appeared on the screen to tell you this, accompanied per-
haps by other lines about a ‘transcript file’ named paper.lst or paper.log,
which we’ll worry about later.

At present our only worry is how to get the printed output. Your computer
will have another program that takes the file paper.dvi and sends it off to the
printer; you’ll have to consult your system experts to find out just how printed
output is obtained. We’ll want to examine this printed output carefully—there
will be some surprises in it—so you should go pick it up as soon as possible.

If you have made the file paper.tex correctly your output will not look like
the original on page 19. Instead it will look like this:

Everyone will be happy when TEX finally arrives, and Dr. Treemunch can start
typing his own so-called scholarly manuscripts. His last opus—which The Amer.
Jour. Recr. Drugs recently published—created quite a sensation, particularly the
material that he has expounded on pages 22-23. Including this material cost an
extra $1,000, but it did make §9 1 and 2 quite popular.

The head of the department, our university’s own I. M. Stable, attributes Treemu-Ji
nch’s recent aberrant behavior to the much-publicized “research” for his paper;
notwithstanding, others say that Treemunch’s name isn’t on the computers’ databases, |}
so his name often gets hyphenated quite strangely, which may account somewhat
for his feeling of being ill-used.

We can immediately see the reason for the Overfull \hbox message. The
word “databases” (together with the comma attached to it) extends a little
beyond the margin—the ‘Overfull \hbox’ is the whole horizontal line

notwithstanding, others say that Treemunch’s name isn’t on the computers’ databases,

The Overfull \hbox message begins by telling us that this box is 9.63954pt
too wide; here pt stands for the printer’s “point”, which is approximately 1/72

24 Chapter 3. Your First TpX Experience

of an inch. 9.63954 points is quite a bit, and a word that protrudes this far into
the right margin will be very noticeable. Just to be sure that we do notice it,
TEX has placed a big ugly black mark right next to the offending word, so that
our first attempt at typesetting isn’t exactly something that you'd like to take
home and show off to your friends. Information about this overfull box is also
transmitted to your terminal: the next lines

\tenrm notwith-stand-ing, oth-ers say ... databases, |

describe the Overfull \hbox in more detail—first comes \tenrm, the name of
the font being used (ten point roman), then comes a good portion of the actual
letters being set, and finally we have the end of the line, databases, followed
by |, which stands for the black box that TEX put on the paper.

The reason for such miserable output is that TEX doesn’t know how to hy-
phenate the word “databases”. TEX has a very efficient procedure for finding
hyphenation points, but it doesn’t catch them all, and “database” slips through
unaffected. Moreover, TEX was not willing to move “databases” onto the next
line because it would have to stretch out this line,

notwithstanding, others say that Treemunch’s name isn’t on the computers’l

to an extent that it considers intolerable.! TiX would rather produce something
that you will find intolerable, so that you will be forced to deal with the problem.

WEell ..., having been forced to deal with the problem, one possibility is for
us to force TEX to break the line against its inclination. To force a line break
we just type \linebreak. Thus, we can type

the computers’\linebreak databases ...

to force TEX to break the line before the word “databases”—and to spread out
the line so that it reaches to the right margin. If you leave a space before
\linebreak, ApS-TEX will simply assume that you didn’t want it, and still
spread the line out to the margin.

e Exercise 3.1:
Add \linebreak to paper.tex, and run it through TEX to see what you get.
How bad did TEX think it was to break the line in this way? (You don’t have
to bother deleting the file paper.dvi; TEX will delete it when it needs to write
a dvi file for the new paper.tex.)

L Actually, it’s the amsppt style that determines how far TEX will allow a line to be stretched;
the text on page 19 was produced by modifying the amsppt style so that it would allow more
stretching.

Chapter 3. Your First TpX Experience 25

There obviously ought to be a better solution to our problem than forcing TEX
to break the line in this way; we should be able to tell TEX how to hyphenate
“databases”. In fact, we can do this by changing databases in the input to

data\-bases

The special control symbol \- represents a “discretionary hyphen”—it tells TEX
that a hyphen can be inserted here, without insisting on it. (So if we change the
wording later on, we won’t be forcing a hyphen in an unwanted place.)

Missing the hyphenation in “databases” was an unfortunate lapse on TEX’s
part, but sins of commission are worse, and Dr. Treemunch would undoubtedly
be quite incensed about the absurd way that TEX did hyphenate his name in
the second paragraph. We can fix this problem by typing

Tree\-munch

The \- not only informs TEX of a possible hyphenation point for “Treemunch”,
it also prevents any other hyphenations, because TEX will never insert hyphens
into a word that already has either a hyphen or a discretionary hyphen.

e Exercise 3.2:
Change paper.tex by removing the \linebreak and inserting discretionary hy-
phens in databases and Treemunch and Treemunch’s and run the paper again,
to see what you get.

Although the discretionary hyphen \- will save the day when an anomalous
word occurs, it would be inconvenient to insert discretionary hyphens in the
same word over and over again. If we are going to continue complaining about
Treemunch for several pages, we can add the proper hyphenation of his name to
TEX’s database for the whole paper, simply by typing

\hyphenation{Tree-munch}
at the beginning.

e Exercise 3.3:
Take out all the discretionary hyphens \- in paper.tex—the ones that you
inserted in data\-bases and Tree\-munch and Tree\-munch’s—and add

\hyphenation{Tree-munch}
\hyphenation{data-base}

to the beginning of the paper (right after \document, say). For the purposes
of this exercise we are explicitly not giving TEX the hyphenation for the forms
“Treemunch’s” and “databases”. Run paper.tex through TEX again, and see
what you get, consulting the Answers for further enlightenment.

26 Chapter 3. Your First TpX Experience

Finally, let’s get things right by adding the proper hyphenation of the words
“Treemunch”, “database” and “databases”. It isn’t necessary to add a separate
\hyphenation line for each. We can combine them into one line

\hyphenation{Tree-munch data-base data-bases}

¢ Exercise 3.4:
Replace the old \hyphenation lines with this new one, and run paper.tex again.

Now that we know how to get TEX output, you can handle the Exercises in a
different way. Instead of scribbling them down on a piece of paper, and checking
with Appendix A, you can scribble them down in a computer file, and see what
TEX does with them. Of course, you’ll want to save up the answers for a chapter
or two, rather than running TEX over again for each Exercise, unless you can
afford to use lots of machine time. But sooner or later (perhaps already) you
will make some errors that will get TEX even more confused than you are. So
the very next step is to look at the sort of error messages that TEX gives you.

Chapter 4. TEX’s Erroneous Zones

The file paper. tex was purposely contrived to produce bad hyphenations and
Overfull box messages. After all, it’s a commonplace that initial experiences
of this sort are seldom entirely satisfactory. In practice, however, hyphenation
problems almost never arise, and an Overfull box is also quite rare.

Until you become quite a TEX adept, you're much more likely to be greeted
with “error messages”; these occur when you have done something that gets
TEX confused, so that it has to stop and ask for clarification. You needn’t get
too uptight when you encounter an error message, because TEX can always be
coaxed into making an informed guess about your intentions. You can think of
an error message as a chance to figure out what TEX is thinking. Some people
like such opportunities to psychoanalyze the computer, but if this doesn’t appeal
to you, then you can always let TEX try to figure out what you were thinking.

Leaving our file paper.tex intact for the present, let’s begin by making an-
other file, say goof.tex, in which we will purposely plant some errors:

\input amstex

\documentstyle{amsppt}

\document

Here is a word in {\It italics\/} and here is one
in {\Bf boldface} and one in {\It italics\/} again.
\enddocument

As in the previous chapter, we will be making various changes in this file; if you
make the changes in your copy of goof .tex as we go along, you’ll be able to see
the results described here happening on your terminal.

First let’s try running our initial version of goof.tex through TEX. When we
do, TEX will shriek at us:

! Undefined control sequence.
1.4 Here is a word in {\It
italics\/} and here is one

The top line, beginning with !, is an error message, telling us that TEX has come
upon a control sequence that it doesn’t recognize. More information is given in
the next pair of lines. On the first of these lines we see the undefined control

27

28 Chapter 4. TgX’s Erroneous Zones

sequence \It, together with (a portion of) the line that comes before it. The
succeeding input is printed one line lower, so that it is easy to see exactly how
far TEX had gotten in the input file before it detected the error.

Finally, TEX has printed ? on the next line, indicating that it is asking us
what to do. At this point we have several options. The most abject response
would be to type X or x, followed by (carriage-return), in order to exit from TEX.
Then we could return to our file and fix the error, try running it through TEX
again, to discover the next error, return to our file and fix this error, etc., etc.,
ete. Instead of capitulating so quickly, however, we can simply type (carriage-
return). Now TEX will try to fix the error as best it can; in the present situation
it will simply ignore the control sequence \It and proceed. Of course, this means
that the word “italics” won’t appear in italics, but that’s hardly worth worrying
about, since we’ll probably find some more errors anyway, and won’t try to print
anything this first time through.

Sure enough, we soon get the next error message,

! Undefined control sequence.
1.5 in {\Bf
boldface} and one in {\It italics\/} again.

whose meaning should now be clear. This time let’s try a somewhat more gutsy
approach; we want to insert the correct control sequence \bf. To do this we can
type i or I, followed by (carriage-return), to tell TEX that we want to insert
something. (Go ahead, try it.) TEX will respond with

insert>

Now we can type \bf, followed by (carriage-return). As you can see, TEX accepts
this and quickly presents us with the final error message:

! Undefined control sequence.
1.5 in {\Bf boldface} and one in {\It
italics\/} again.

This time let’s simply type x to exit, so that we can examine a few more types
of errors.

If you go back to the editor, you’ll see that \bf hasn’t actually been inserted
into your file—TEX merely inserted \bf into its own private copy of your file.

Chapter 4. TgX’s Erroneous Zones 29

All the old errors remain in goof .tex, but for the moment don’t correct them.
Instead, add one new error: omit the { before the final \It, so that we have

in {\Bf boldface} and one in \It italics\/} again.

Now start TEX all over again. Naturally, we first get the old error message

! Undefined control sequence.
1.4 Here is a word in {\It

italics\/} and here is one
?

This time we’ll insert the correction \it, but we’ll do it in just one step. Try
typing
i\it or I\it
followed by (carriage-return). Now correct the next two errors in the same way.
Finally, TEX will reach the fourth error:

! Too many }’s.

1.5 in {\Bf boldface} and one in \It italics\/}
again.

7

The meaning of this error message should also be quite clear, but sometimes you
may want to ask TEX for more help. We can do this by typing h or H, followed
by (carriage-return), and in the present situation TEX will answer:

You’ve closed more groups than you opened.
Such booboos are generally harmless, so keep going.

Well, let’s take TEX’s advice: at this point it won’t help to insert anything—the
time for inserting the necessary { is long since past—so we’ll just keep going by
hitting (carriage-return) again. This causes TEX to take the only diversionary
tactic possible—it simply omits the } and hopes for the best. Sure enough, TEX
now gets to the end of the file, and produces a dvi file.

We wouldn’t want to print the dvi file that TEX has produced because our
final error wasn'’t really corrected: by omitting the } TEX has actually caused
the word “again” to be printed in italics also. Now’s the time to go back and
correct all the errors at once. Have you forgotten them? Don’t worry! Here’s
where we get to use the “transcript file” goof.lst; you'll find that the error
messages that appeared on the screen have also been recorded there, so you can
look them over at your leisure.

30 Chapter 4. TgX’s Erroneous Zones

e Exercise 4.1:
Consult goof.1lst to see what additional information it contains. Correct all
the errors in goof.tex and run it through TEX once again, to check that you
get no error messages.

e Exercise 4.2:
Omit the { before the final \it, type h or H when you get the error message, and
then type it once again, to see what you get.

¢ Exercise 4.3:
Put back the { but leave out the space after the first \it, so that we have

{\ititalics\/}...

in the file. What error message do you get, and how should you respond?

e Exercise 4.4:
Correct the previous error, but now leave out the last right brace }, so that we
have something like

. and one in {\it italics\/ again.
\enddocument

with a { that has no matching }. Run this file through TEX to see what happens.
If you get such a message in a big file, what should you do?

Although we’ve examined several kinds of errors in this chapter, they were all
rather simple to diagnose. That’s to be expected, since we can presently typeset
only simple material, and consequently make only simple mistakes. As we learn
to typeset more interesting material we will also examine, perhaps inadvertently
at times, the more interesting mistakes that can be made when we really put
our minds to it.

There are a few other details of TEX’s error messages that you might be interested
in learning about now.

e Exercise 4.5:
Balance the braces again, but change the first \it to \It once more. This time,
when TEX shrieks the error message at you, shriek right back by typing !, followed by
(carriage-return), and see what happens.

e Exercise 4.6:
Leave out the very last line, \enddocument, in goof.tex, and see what happens when
you run it through TEX. Figure out how to bring things to a satisfactory conclusion,
checking with Appendix A.

Chapter 4. TgX’s Erroneous Zones 31

e Exercise 4.7:
See what happens when you mistype the name of the paper. For example, try

Q@tex goofy

(assuming that you have no file called goofy.tex).
¢ Exercise 4.8:
Try telling AAMS-TEX to use your own (as-of-yet nonexistent) style mystyle, by chang-
ing
\documentstyle{amsppt}
to

\documentstyle{mystyle}

and see what happens.

Chapter 5. Spaces That Separate, Ties That Bind

Although the hyphenation problems in paper.tex have already been resolved,
the output isn’t ready to be “finalized.” Why? Because the experienced eye
would immediately note that the spacing in this paper isn’t what you’d expect
from high quality typesetting, where there is more space at the ends of sentences
than between words. (This looks better and makes for easier reading.) TEX also
follows this rule, but it doesn’t always know where a sentence ends! One trouble
is that TEX usually assumes that periods end sentences.

Of course, as you can readily see from the previous paragraph, TEX does know
that ! and ? represent the end of a sentence, just as it knows that periods followed
by quotation marks or parentheses also represent ends of sentences. TEX is even
smart enough to know that periods after upper-case letters are probably initials,
and thus not ends of sentences. So in the output for paper.tex the spacing in
the name “I. M. Stable” was fine. But TEX doesn’t know about abbreviations,
so it can’t figure out that input like Dr., doesn’t signify the end of a sentence.
Consequently, “Dr. Treemunch” and “The Amer. Jour. Recr. Drugs” were too
spaced out.

AMS-TEX has the control symbol ‘\.” to represent a period that indicates an
abbreviation rather than ending a sentence. So we can get the right spacing by
typing Dr\. Treemunch and The Amer\. Jour\. Recr\. Drugs. Notice that
the spaces after ‘\.’ aren’t ignored, since they follow a control symbol.

In addition to the poor spacing after the abbreviations, a couple of the line
breaks in our output for paper.tex are also unsatisfactory, because they inter-
rupt the flow of reading. It isn’t ideal to have “pages” at the end of one line,
with “22-23” on the next line, and the break between “99” and “1 and 2”7 is
even more disconcerting. TEX can’t deal with such psychological questions, so
you have to help it out here, also. Once again, there is a simple solution to the
problem. If you type the “tie” ~ between two words, then TEX will insert a space,
but prohibit a line break. Thus, you can type pages~22--23 and \P\P"1 and~2.
In the second example a second tie was used to prevent “2” from appearing at
the beginning of a line.

By the way, if you have a space on either side of ~ it will simply be ignored
by ApmS-TEX. This makes it easier to insert ties later on, and also simplifies
matters as you're typing: if you’ve typed pages,, and then suddenly realize that
you ought to have a tie, you can just type ~ next, without bothering to go back
to delete the . (If you are missing the ~ key, you can use the control sequence

32

Chapter 5. Spaces That Separate, Ties That Bind 33

\tie instead; of course, in this situation, a space after \tie is ignored by TEX
in any case.)

Unfortunately, there doesn’t seem to be a good set of rules for deciding just
when ties should be used. It’s a matter of judgment and experience, wherein the
TEXnical typist can show Eir mettle. After a while you won’t have to insert ties
on the second try, because the whole thing will become second nature. Further
suggestions for using ties will be found in Part 3, and ties will also appear in the
Answers to the Exercises, when appropriate.

Ties are often preferable to \. after abbreviations. For example, it is best
to type Dr. Treemunch, since this will still give an interword space, and also
prevent a line break. And the best way to type the journal title might be

The™ Amer\. Jour\. Recr. Drugs.

e Exercise 5.1:
Insert ~ and \. in the appropriate places in paper.tex and run it through TEX
once again. This was the sixth try. Rest, and admire your handiwork.

e Exercise 5.2:
The first time the author tried Exercise 5.1, he got the strange combination ‘91’
in the output. What was his mistake?

e Exercise 5.3:
How would you type the following?

Weird fruit (mangos, papayas, etc.) are avoided by farmers, fastid-
ious eaters, et al.

In our final version of paper.tex we still have a possibly objectionable line break,
at the en-dash between “22” and “23”. TEX normally regards hyphens and dashes
as reasonable places for line breaks, but AzS-TEX provides an easy way to specify
hyphens and dashes where line breaks can’t occur. If you type @- you will get a
hyphen with a line break prohibited. Similarly, @-- and @--- give an en-dash and
em-dash and prohibit a line break. (By the way, most document styles tell TEX to
disallow line breaks after hyphens and dashes in bibliographies, so you usually don’t
have to bother with @- and @-- there.)
If you try replacing the -- by @-- in paper.tex, you’ll find that TEX has to juggle
the paragraph a bit to comply with all your specifications.

Chapter 6. Doing It With Elan

You can now use TEX to print about 95% of any ordinary text that you will
ever encounter. But before you add TgXpertise to your résumé, we ought to
resume our study of TEX, since you still can’t typeset things like ... , well, like
this paragraph.

First of all, as we have already intimated in Chapter 1, there are a few special
symbols that sometimes appear in text:

Type To get

\dag T (dagger or obelisk)

\ddag I (double dagger or diesis)
\S § (section number sign)

\P 9 (paragraph sign or pilcrow)

And you might want \copyright to (¢©) your brilliant production.
More important, remember that the characters

N\ { r $ & # % e ~ - _ "

have special uses in ApS-TEX, so some finagling is required to make them appear
in the output. We know that \$ stands for the dollar sign $. The other standard
non-mathematical symbols are produced similarly:

\{
\}
\$
\&
\#
\%
\e

© NIk & F

TEX also allows you to type _ to get a printed _, for things like “first_letter”;
mathematicians seldom use such constructions but computer scientists are partial
to them. (If you are missing the _ key, you can use \underscore instead of _.)

e Exercise 6.1:
The rule that TEX ignores everything on a line after a % sign isn’t 100% accurate.
What is the exception? Hint: See Exercise 6.1.

34

Chapter 6. Doing It With Elan 35

e Exercise 6.2:
How would you type the following sentence to TEX?

My #1 solace is M & M’s, though any candy is dandy; I agree
100% with O. Nasht that liquor is quicker, but a fifth of J & B
@ $13.95 {price as of this writing} is beyond my means.

The undirected double quote mark " doesn’t appear on our list of special
symbols for the simple reason that it really isn’t a symbol at all—normal text
fonts have no such character, and you will always want either ‘¢ or ’’. The
backslash \ is another symbol that doesn’t appear in normal text. But \ is a
fairly common mathematical symbol; in fact, it is used in a couple of different
ways, and some fonts may even have a variant form, like . There are special
control sequences for these symbols in mathematics formulas.

This leaves only the symbols ~ and ~ to be accounted for. These symbols
can occur in ordinary text, but only as accents ~ and " over letters. In fact, a
whole slew of special symbols and accents is needed for foreign languages that
still basically use the roman alphabet. If you are an English literary chauvinist,
you might not even want to bother learning about these accents right now—
for the time being you can type the usual sloppy approximation to non-English
words and names, and trust the journal editors to worry about details; when
your foreign colleagues fume, just tell them “{Manana is good enough for me!”

Each accent over a letter is indicated by a control sequence with an argument.
In the following table the same letter o will be used as the argument in all cases.

Type To get

\‘o o) (grave accent)

\’0 6 (acute accent)

\"o) (circumflex or “hat”)
\"o 0 (umlaut or dieresis)
\"o) (tilde or “squiggle”)
\u o o (breve accent)

\v o) (hacek or “check”)
\H o 6 (long Hungarian umlaut)
\B o 0 (macron or “bar”)
\b o) (bar-under accent)
\D o) (dot accent)

\d o 0 (dot-under accent)
\¢c o Q (cedilla)

36 Chapter 6. Doing It With Elan

AMS-TEX also has a “tie” accent indicated by \t, which is a control sequence
with two arguments:

\t oo 00

(We've already mentioned that \1q can be used if the ¢ key is missing from
your keyboard. But you can’t replace \ ¢ by \\1q since TEX would interpret this
as the control symbol \\ followed by the letters 1q! Appendix E explains the
alternative ways of typing \‘, \’, \™ and \".)

Notice that spaces are needed after \u, ..., \c and \t since they are control
words. Thus, to get the word “hacek” you should type

h\’a\v cek
Admittedly, a word with a space in it looks strange, so you might find the input
h\’a\v{c}ek

less confusing. But this takes quite a bit more typing, and you’ll probably get
used to things like h\’a\v cek.

Of course, spaces are not needed after control symbols like \’. Indeed, you
might think that a space after \’, as in the input

h\’ a\v cek

would be an error, for in Chapter 1 we said that spaces after control symbols are
not ignored. However, this rule actually applies only to control symbols like \$,
\u and \/ that do not have arguments. When a control symbol has an argument,
there is a more general rule that takes precedence:

TEX always ignores spaces when looking
for the argument of a control sequence.

You should remember this rule for later use, but for accenting letters you can
simply stick to things like \’a, which are easier to type anyway.

¢ Exercise 6.3:
What is wrong with typing the following?

The word ‘‘h\’a\vc ek’’ should be spelled
with a h\’ a\v c ek.

e Exercise 6.4:
How would you type the following: beloved protégé; role coordinator; soufflés,
crépes, patés, etc.

Chapter 6. Doing It With Elan 37

There’s only one little detail of accenting that TEX won’t take care of auto-
matically. For accents over ‘i’ and ‘j’ one needs the dotless ‘1’ and ‘j)’; to obtain

them you must type \i and \j.

¢ Exercise 6.5:
What’s the non-naive way to type naive?

¢ Exercise 6.6:
How would you type the names Ernesto Cesaro, Pal Erdos, Sergei Yurév, Eduard
Cech, Tabit ibn Qorra, Muhammad ibn Misa al-Khwarizmi?
In addition to the accents that you can get with TEX, there are also a few
special letters that TEX recognizes:

Type To get
\oe, \OE e, (B
\ae, \AE &, &
\aa, \AA a, A
\o, \O 8, O
\1, \L L L
\ss i

e Exercise 6.7:
Explain how to type the following: Aisop’s (Buvres en francais.

e Exercise 6.8:
How would you type the names Qystein Ore, Anders Jonas Angstrém, Stanistaw
Swierczkowski?
Finally, the | and ; that you need for Spanish aren’t specified by control
sequences, but are recognized as ligatures:

Type To get
1e i
7¢ ¢
(jThis arrangement seems pretty safe, since it’s hard to imagine a situation
where you would want ! or ?* to occur in text!)
e Exercise 6.9:
How do you type the following;:
. What did you say, Senior? I said, “Manana is good enough for me!”
All our examples so far have involved roman type, but everything that we’ve

said also applies to the other text fonts. Each type style has its own accents and
special letters, so that {\bf\"o} yields 6 and {\s1 \"a} yields a.

38 Chapter 6. Doing It With Elan

e Exercise 6.10:
Explain how to type the following sentence:

Commentarii Academiz Scientiarum Imperialis Petropolitanae is
now Akademira Nauk SSSR, Doklady.

Well ... | now that we’ve finally gotten accents out of the way, we musn’t omit
AMS-TEX’s way of handling an “ellipsis”, the three dots (...) that indicate an
omission. If you simply type three periods in a row, the output is “...”, with the

dots too close together. On the other hand, if you leave blank spaces between
the dots you will get too much space, and TEX might even break a line between
them! So ApS-TEX gives you the control sequence \dots to help you. The
input

Hmm\dots how do you space the dots?

produces “Hmm ... how do you space the dots?” If you leave a space before
the \dots, ApS-TEX will simply ignore it and insert the amount of space that
it thinks is proper. Of course, the space after \dots is certainly irrelevant, since
it follows a control word (but you do need at least one space between \dots and
how in our example). Don’t worry if the dots happen to be followed by some
punctuation, TEX will handle it just right ... ! Well ... | actually you do have
to worry a little.

¢ Exercise 6.11:
What is wrong with typing the following?

Well \dots ,actually you do have to worry a little.

e Exercise 6.12:
What is the proper input for the first paragraph of this chapter?

Since several different topics have been covered in this chapter, a brief review
is in order:

(1) The printed characters {, }, $, &, #, % and @ are named by the obvious
control symbols—\ followed by the corresponding characters. The sym-
bols 1, 1, §, § and (© have control words to name them. There’s also _
for a printed _.

(2) Accents over a letter are produced by applying various control sequences
to the letter (or pair of letters in the case of \t). Spaces are unnecessary
(but allowed) after those that are control symbols. \i and \j are needed
for the dotless 1 and j.

(3) There are control sequences for special letters like ce, &, a, ¢, t and 8,
but the Spanish | and ; are obtained as ligatures.

(4) Use \dots for ¢

Chapter 6. Doing It With Elan 39

We'll conclude this section by listing a few stray points that you might have to
worry about now and then.

(i)

As we'’ve already mentioned, TEX assumes that periods after upper-case letters
are initials, and hence do not indicate the end of a sentence. But sometimes a
period, or other punctuation, after an upper-case letter is the end of a sentence:

Perhaps you’re wondering who concocts these silly illustrations
about TEX. (You won’t find the answer in Appendix A.) I
cannot tell a lie—it is I. Supported by the NSF? Nope, nor
any other such boondoggle.

In this case AAMS-TEX gives you ‘@.° for a period that is the end of a sentence,
with similar constructions @, @; @: @! and @7 for other punctuation:

about \TeX@. ... Appendix~A@.)
It is I@. ... by the NSF@? Nope,

On the other hand, the rule about periods after upper-case letters doesn’t
apply when a period follows an accented upper-case letter, as in “E. Cartan”.
So here you would need \. (or preferably ~) to indicate an ordinary interword
space: \’E.~Cartan.

Another special spacing problem occurs when you have quotes within quotes:

9

“They call this ‘typesetting’” he sneered.

It won’t do to type
...‘typesetting’{’’} he sneered.

because not enough space will be left after the single quote—you’ll get ”” which
looks almost like three equally-spaced single quotes—while ’\,’ > will leave too
much space. The special construction @" will solve this problem. Type

... typesetting’ @" ’’ he sneered.

Spaces before and after @" are ignored, so your input doesn’t have to look
squashed. You will also get the correct spacing in any of the legitimate combi-
nations

2 @ll J ”
(39 @ll 4 13

1 @u ¢ (X3

Courses

which everyone needs

Chapter 7. TEX’s Brand Of Mathematics

The real fun and challenge of technical typesetting comes from the horrendous
formulas with which mathematicians routinely deal. Insiders know, of course,
that the complexity of these formulas is somewhat misleading. Big formulas are
made up of smaller formulas, and smaller formulas are made up of yet smaller
formulas, and Fortunately, unlike Swift’s hierarchy of back-biting fleas, this
process does not go on ad infinitum—all formulas can be built up in a few steps
from relatively simple ones. So the art of technical typesetting begins with the
simplest formulas.

To tell TEX that the next part of the present paragraph is part of a math-
ematical formula, simply enclose it within $ signs—this causes TEX to enter
“mathematics mode” and to process that input text specially. For example, you
can get the formula z < y = 3(x — 1.5)/(—2|z| + {) to appear in the output by
typing

. get the formula $z < y= 3(x -1. 5) /(-2 | x
[+1) $ to appear in the output by typing ...

This simple example illustrates several important points.

(1) Letters are automatically italicized in formulas, while numerals and punc-
tuation symbols (like parentheses) are set in roman type. An 1 (lower-
case L) gets set as [, which is even easier to distinguish from the numeral
1 than an ordinary typeset ‘I’. Notice, by the way, that even a single
symbol can be a “formula’: if you type x in the input, you will get x
in the output.

(2) The hyphen becomes a minus sign and the slash becomes a slanted frac-
tion line. The symbol |z| stands for the “absolute value of 2”7, but it’s not
necessary to know what this means; the only important thing is that TEX
will typeset | even if your keyboard has | instead of |. Remember also
that you can use \vert instead of | if your terminal lacks this symbol.

(3) Most important of all, within $ signs TEX completely ignores all spaces
and (carriage-return)s.

When setting a formula, TEX relies on its own spacing rules, which probably
involve more details than you would want to keep track of. For example, in the
formula z < y = 3(z — 1.5)/(—2|z| 4+ I) the < and = signs are “binary relations”,
which function as verbs, the + sign and the first — sign are “binary operators”,

43

44 Chapter 7. TgX’s Brand Of Mathematics

which function like conjunctions, and the second — sign functions like an ad-
jective. Standard printing conventions use spacing that reflects these different
roles: thus, there is a little more space around the < and = signs than there
is around the + sign or the first — sign, while there is no space at all after the
second — sign. Fortunately, you don’t have to remember any of this, since TEX
does it all for you.

Despite the fact that TEX ignores spaces within $ signs, they should not be
regarded as useless, since they can make the input text a lot easier to read—
for example, individual parts of long complicated formulas can be separated by
several spaces. Initially, force of habit may lead you to use spaces even in short
formulas, like

$z <y = 3(x - 1.5)/(-2Ixl + 1)$

so as to approximate the spacing that will eventually appear in print. However,
you’ll soon come to realize that the spaces do nothing but slow down the typing,
and you’ll probably graduate to something like $z<y=3(x-1.5)/(-2|x[+1)$,
reserving spaces for more complicated situations. In this manual we’ll use spacing
in a haphazard way, just to emphasize that it’s an unnecessary good.

e Exercise 7.1:
What’s wrong with typing the following?

If the formula$ y=x-1$ is true ...

e Exercise 7.2:
Explain how to type the following sentence:

Deleting an element from an n-tuple leaves an (n — 1)-tuple.

e Exercise 7.3:
What is the proper way to type the following?

Consider the graph of f — g + h in the z—y plane.

You should take advantage of the fact that TEX is usually smart enough to
choose correct spacing in mathematics formulas, but you needn’t be taken in by
TEX’s finesse at setting mathematics formulas. TEX doesn’t really “understand”
formulas (any more than a human typesetter does). Technical typists should
regard this as good news, for it means that they don’t have to understand the
formulas either. For example, it’s not important to know why there are paren-
theses in the formula z < y = 3(x—1.5)/(—2|x|+1)—so long as they get typed in.
Mathematicians actually use parentheses in many different ways, but again it is

Chapter 7. TgX’s Brand Of Mathematics 45

not necessary to understand these different uses. If you type $y=£f (x)$ you will
get the formula y = f(z), in which the parentheses have a special mathematical
use. Similarly, if you type $y=f [x 1$ and $z=f (x,y)$ you will get the formulas
y = fla] and z = f(z,y).

Mathematicians are usually fairly careful about putting the necessary paren-
theses in their manuscripts. But they sometimes get lazy, and stop counting
parentheses in a formula like the following;:

1+2(3+4(5+6(7+1x)))

Even if the parentheses don’t match up, a catastrophe won’t ensue—TEX isn’t
very discriminating on this score, and will be quite happy to typeset the formula

1+2(3+4(5 +6(7+z))

even though it is mathematically unacceptable. This is fortunate, because TEX
mustn’t object to a formula like (2,2 4+ 1], which doesn’t look like it should be
mathematically acceptable, but which actually is, because the parenthesis and
bracket have special meanings.

Curly braces, as well as parentheses and brackets, are often used with special
meanings, as in the following formula:

z+ x|+ (z) + [z] + {z}

To set this formula you just have to remember that printed braces must be
specified by the control sequences \{ and \}, since actual braces serve the special
function of grouping things. Thus, you should type

$x +lxl+ (O+[x]I+\{x\}$

In addition to \vert as a replacement for |, TEX also has \1brack and \rbrack
as replacements for [and]; the latter work in math mode as well as in text.
(And TgX even has \1brace and \rbrace to stand for the printed \{ and \}.)

Brackets and braces may also be used just like parentheses, in order to make
the pairings clearer, as in the formula

14+ 2{3+ 4[5+ 6(7 +)]}

Such constructions are becoming a little old-fashioned, since [| and { } fre-
quently have special meanings, but they occur often enough in many branches
of mathematics.

46 Chapter 7. TgX’s Brand Of Mathematics

e Exercise 7.4:
How was the above formula typed?

e Exercise 7.5:
What output would the following input produce?

$1+2{3+4[5+6(7+x)]}$

Hint: Look closely.

e Exercise 7.6:
And how about the following?

$x {+} y$

(The answer is a little surprising—be sure to try it out, and consult Appendix B.)

A nasty surprise awaits you if you type the formula $10x + 100 y +1,000 z$. You
will get 10z + 100y + 1,000z because TEX normally leaves a little space after
commas in math mode.

e Exercise 7.7:
How do you think you can get around this?

So far we’'ve only dealt with formulas involving letters, numerals and punc-
tuation, together with the symbols =, +, —, <, > and | that appear on most
keyboards.” But mathematicians routinely employ dozens of other symbols, like
o0, €, <, etc. Each of these symbols has a control sequence to name it. The
symbol oo, which stands for “infinity” (more or less), is named by \infty; the
shorter name \inf happens to be used for something else, which we’ll learn
about in a later chapter. And the symbol € occurs in formulas like z € A,
which is often read “x in A”. To get the formula x € A you just type $x\in A$.
Notice that the space after \in is needed, even though TEX “ignores” spaces in
formulas.

By the way, some keyboards have special keys like 0o, but you should not use
them unless your TEX has been specifically tailored for that keyboard.

*We also ought to mention the * key! In ordinary text this gives the asterisk *, which is
normally used only for footnotes. Since ApMS-TEX, together with the particular style you are
using, determines what the footnote marks will be, and inserts them for you automatically,
you will hardly ever use * in text. But * is sometimes used in math formulas. For example
$(£*xg) (x)$ gives the math formula (f * g)(x).

Chapter 7. TgX’s Brand Of Mathematics 47

TEX has the control sequence \ell to give the symbol ¢, which mathematicians

sometimes use with some special meaning. But before using \ell be certain that
this is what is wanted, since many authors write something like ¢ in their manuscripts
simply to indicate an I. (A symbol like ¢ is available on many typewriters, and con-
scientious typists often use it instead of 1, to distinguish it from the typewriter’s 1,
thereby adding one more layer of confusion!)

The names for all the esoteric math symbols are listed in Appendix F. Most of
them should simply be learned as needed, but there are a few extremely common
ones that you’ll want to know about right away:

\leq or \le < (“less than or equal”)
\geq or \ge > (“greater than or equal”)
\neq or \ne # (“not equal”)

\notin ¢ (“not in”)

By the way, the control sequence \not gives a / that can be used to “negate”
other binary operators besides =. For example, the control sequence \equiv
gives the operator = in math mode, and $\not\equiv$ gives #; the control
sequences \ne and \neq are, in fact, simply abbreviations for \not=. But no-
tice that the / in ¢ has a different slope from the / in #. For this reason,
you should always type \notin rather than $\not\in$, which gives the less
pleasing symbol &.

In addition to special symbols, mathematicians sometimes use accents, as
in formulas like A, and other fonts, as in formulas like ax + by. Fonts and
accents work completely differently in math mode than they do in ordinary text,
and details have been relegated to Part 3, because these matters are rather
specialized.

On the other hand, mathematicians have also supplemented their arsenal of
specially concocted symbols with letters stolen from the Greeks, and these are
used very frequently. For example, α and β and γ and
δ produce the first four Greek letters a, 3, v and J, while Γ
produces I', which is an upper-case gamma, and Δ similarly produces A,
an upper-case delta. (There are no \Alpha and \Beta, since the corresponding
upper-case letters just look like “A” and “B”.)

The fifth letter of the Greek alphabet is produced by ϵ, which
gives €. Notice that this is quite different from the membership symbol €. Un-
fortunately, not all mathematicians are conscientious about distinguishing these
symbols in their manuscripts, so some consultations may be in order before be-
ginning a long job. Make sure also that the author has carefully distinguished

48 Chapter 7. TgX’s Brand Of Mathematics

the Greek letter \nu (v) from v and \kappa (k) from x or k. The Greek letter
\phi (¢) should also be distinguished from the symbol), called \emptyset.

Just to make matters a little worse, € has the variant form e, which is pro-
duced by ε, and four other Greek letters also have variant forms:*
while the input $(\theta, \pi, \rho, \phi)$ yields (0,7, p,), the input
$(\vartheta,\varpi,\varrho,\varphi)$ yields (9, e, o, ¢). All upper-case
Greek letters also have variants: for example, \varGamma gives I" and \varDelta
gives A.

If you haven’t had the benefits of a liberal education (studying the classics or
belonging to a fraternity or sorority), you may not be familiar with the names of
the Greek letters. That’s no problem—they are all listed in Appendix F, together
with all the other esoteric symbols. Still, you might think that it’s going to be
quite a pain to type α every time you want an « if this symbol happens
to appear frequently in a paper. Wouldn’t it be nicer to type short names, like
\a for α and \b for 57 And while we're at it, why does TEX have
such funny names for some of the other funny symbols? Calling = \equiv may
be helpful to mathematicians, who usually pronounce = as ‘equivalent to’, but
it doesn’t help the technical typist!

TEX has a rather conservative philosophy about terminology: it generally uses
long descriptive names for most of its control sequences, since there is then
at least some basis for common agreement about the names—any system of
abbreviated names usually has both vigorous adherents and detractors. TEX
can afford to take such a cavalier approach to the problem because TEX typists
can always define their own control sequences. When an esoteric symbol occurs
only once or twice in a paper, you might as well just look it up in Appendix F and
use the name provided, but for symbols that appear frequently you can invent
your own names—you can tell TEX that you want \a to mean \alpha, etc. The
process of defining your own control sequences isn’t covered until Part 3, because
it’s always easier to learn an established system, no matter how irritating it may
sometimes seem, than it is to create your own special variant. But you can keep
this possibility in the back of your mind every time you do an exercise that has
you typing longer control sequences than you’d like.

e Exercise 7.8:
You’ve typed a long paper in which the author has used the letter x in numerous
formulas. Now E tells you that Eir handwritten x was really supposed to be !
So you are going to use your text editor to replace all x’s with \kappa’s. How
should you proceed?

IFor the fate of a fifth variant, ¢ (\varkappa) see Appendix G.

Chapter 7. TgX’s Brand Of Mathematics 49

e Exercise 7.9:

Now assume you have the opposite problem. The fickle author decides to replace
all k’s with k’s. What precautions do you need?

e Exercise 7.10:

Consulting Appendix F for the names of various symbols, explain how to typeset
the following formulas:

(1) X\(AUB) = (X\A4)N(X\B)
(2) r¢ AZ B

(3) (X XY)xZ=Xx(YxZ)
(4) wA(MAA) = (AN AX

(5) VoAl

(6) la(z +)l < lal - (=]l + llyll)

(7) 2. N =N

(8) 2-w#w

(9) VR(X,Y)

(10) (100 +.001) = 5

(11) Vo > A

(12) fxg: A— B

(13) T o+

(14) f(2) € o) & g(x) € O(x) = fog(x) € ofa)

In this chapter we’ve explored only the rudiments of typesetting mathematical
formulas—as of yet we’re not even able to produce an interesting little formula
like 8 = 23. But we've already learned enough to begin making new and inter-
esting mistakes! To see how TEX copes with our new-found abilities, let’s make
a file containing the following (where we temporarily use \par instead of a blank
line to make a few things clearer a little later on).

50 Chapter 7. TgX’s Brand Of Mathematics

This paragraph contains a formula $x that we forgot to
end properly. It also contains a second formula y$ that
we forgot to start, and a final

formula $x+y that we also forgot to end.\par This
paragraph contains another formula \alphat\beta$

that we forgot to start.

TEX can’t read our minds when we make errors of this sort. As far as it is
concerned, in the first two lines we are specifying the weird formula

zthatwe forgottoendproperly.Italsocontainsasecondf ormulay

After all, there’s nothing here that couldn’t actually occur in a formula!
On the other hand, starting a new paragraph inside a math formula makes no
sense at all, so it is specifically disallowed, and when TEX sees

formula $x+y that we also forgot to end.\par This

it knows that the formula had to end before the \par that ends the paragraph.
In fact, when we run our paper through TEX we will get an error message like
the following;:

! Missing $ inserted.

1.8 formula $x+y that we also forgot to end.\par
This

with a ? on the next line, as usual. We’ve left out four lines of the actual message,
which is a little more intimidating than any we’ve seen before, because the basic
strategy in dealing with such error messages is to focus attention on the top line
and the bottom two lines, and not worry overly much about the lines in between.

As before, the bottom two lines tell us that TEX detected an error when it got
to the \par on line 8. And the top line

! Missing $ inserted.

tells us that TEX tried to recover by inserting a $ just before the \par (of course,
TEX hasn’t really inserted the $ into your original file, only in its own private

Chapter 7. TgX’s Brand Of Mathematics 51

copy). If we simply press (carriage-return) in response to the ? prompt, TEX will
have recovered as best it can (TEX has no way of figuring out that the $ should
really go after the +y, and it’s too late for that, anyway). What we get next is
an Overfull box message like

Overfull \hbox ...
[J\tenrm This para-graph con-tains a for-mula $\teni xthatwe

which comes about because the formula
xthatwe forgottoendproperly.Italsocontainsasecondf ormulay

doesn’t fit on a line!
Our next error message is more interesting:

! Missing $ inserted.

1.9 paragraph contains another formula \alpha
+\beta$

As this error message shows, TEX is now inserting the $ sign necessary to begin
the formula « + 3. So if we press (carriage-return) TEX will not only proceed to
the end of the file, it will actually have printed the right formula in this case.

TEX was able to figure out that a $ was needed before the \alpha because TEX
has no regard for the glories of the Greek tongue—as far as it is concerned, Greek
letters are just additional esoteric math symbols, so they are allowed only in math
mode. In a pinch you could get Tey in text by typing $\tau\epsilon\chi$, but
if you're actually setting Greek text, you will be using a different version of TEX,
designed for a keyboard with Greek letters on it, and you shouldn’t even be
reading this manual, which is undoubtedly all English to you.

e Exercise 7.11:
See what happens when you give the following file to TEX:

This paragraph has a formula $x that we forgot to end.
This paragraph has the formula 3\alpha+\beta
This is accurate within \pm.0003 percent.

This paragraph has only text.

52 Chapter 7. TgX’s Brand Of Mathematics

e Exercise 7.12:
;Senor, what happens when you have the following in your file?

The symbols < and > and | give
$<$ and $>% and $|$ in math mode.

Chapter 8. Lousy Breaks? Try An Artful Display

TEX has a special method of finding the hyphenations that are needed to break
a paragraph of text into lines of equal length, but line breaking becomes a more
difficult chore when formulas are intermingled with text. TEX tries hard not to
break a line in the middle of a formula, and when such breaks are unavoidable
TEX will break only after binary relations (reluctantly), or after binary operators
(as a last resort).

Thus, if TEX has to break a line in the middle of the formula f(z,y) =
(z+y)(x—y), it will try to break after the = sign. But if a break after the = sign
doesn’t turn out to be feasible, TEX will settle for a break like f(z,y) = (z +
y)(x —y) after the + sign, or for a break after the — sign, which will look equally
bad. Fortunately, breaks after binary operators occur only rarely, but if you did
get such a break, and it was unacceptable to the author, you might try to force
a break after the = sign with \mathbreak. AAS-TEX also has \nomathbreak
to prevent a linebreak in a formula, so you could also try putting \nomathbreak
after the + and the -, but then there’s a good chance that you might get an
Overfull box message. And, of course, you can easily get an Overfull box
whenever a line of text just happens to end with a formula like abe(de f)ghi[jklJmnp
that simply can’t be broken.

In most cases, the best solution to a bad line break or an Overfull box
that comes from a math formula is to have the author do a little rewriting. In
fact, many mathematicians will be glad to insert or delete a few words in their
not-so-deathless prose in order to keep their treasured formulas intact; with TEX
there are opportunities for rewriting that traditional printers can’t spare the
time for.

TEX’s standard rules for breaking formulas only allows breaks after binary rela-

tions, not before. So TEX may break a formula after the equal sign, like f(x,y) =
(z 4+ y)(x —y), but still produce an Overfull box because the first part of the formula
“f(z,y) =” doesn’t quite fit. In such a case, instead of rewriting, the author might be
willing to have the = sign appear on the next line, even though most printers regard
this as bad printing style. You can force the break by typing f(x,y)\mathbreak =.
Another possibility is to type \allowmathbreak=, which simply allows a break before
the = sign without forcing it (that way, if you change the paragraph later on, you won’t
have to worry about forcing a line break that is no longer appropriate).

Although TEX might break the formula f(z,y) = (z+y)(z—y) after the = sign,
or even after the + or — sign, it will not choose to break the formula after the

53

54 Chapter 8. Lousy Breaks? Try An Artful Display

comma. That’s because commas in math formulas usually separate parts of a sin-
gle mathematical entity—few mathematicians would accept a linebreak like f(z,
y) = (x +y)(z — y). TEX also uses spacing after the comma which reflects its
special role: examine the formula f(z,y) = (z + y)(z — y) closely, yes, you can
see that the space after a comma in a math formula is less than the space after
a comma that occurs in text.

For these reasons, actual punctuation commas should always be left outside
the $ signs. For example, if you want

We have a < b, a = b or a > b in this case.

you should type

We have $a<b$, $a=b$ or~$a>b$ in this case.
If you typed

We have $a<b, a=b$ or~$a>b$ in this case.

you would get
We have a < b,a = b or a > b in this case.

The spacing doesn’t look as good here, and a linebreak after “a < b,” would be
inhibited.

e Exercise 8.1:
How should you type the following?

There exist such division algebras only for n =1, 2, 4 or 8.

e Exercise 8.2:
How would you type the following?

We have f(x) = A, Bor Cforz=0,1,...,n.
e Exercise 8.3:
Explain how to type the following:

For all @ and b we have a < b, a = b, or a > b. We say that < is a
partial ordering.

e Exercise 8.4:
How would you type the following?

If a, b, ¢ > 0, then f(a,b,c) > 0.

Chapter 8. Lousy Breaks? Try An Artful Display 55

Exercise 8.2 illustrated a use for \dots between formulas, but mathemati-
cians frequently incorporate dots as a part of their formulas. For example,
$£(1,\dots,n)$ gives the formula f(1,...,n); notice that the spaces after the
commas are smaller here. And if you type $1+\dots+n$ something magical hap-
pens: you get the formula 1 + --- 4+ n, with the dots centered (further details
about the behavior of \dots in math mode will be found in Part 3).

e Exercise 8.5:
How would you typeset the following?

We have shown that f(1,...,n) < f(0,...,0) + f(1,...,1) +
<o+ f(n,...,n) forn > 1.

Sometimes, even punctilious adherence to the punctuation rules won’t give
truly satisfactory results, because of lapses on the author’s part. Despite the
dictates of good mathematical style, mathematicians frequently fail to supply a
few words to separate mathematical formulas that belong to different clauses.
Instead of saying

If x > 0, then y > 1.
a mathematician may simply say
() Ifx>0y>1

This sentence was typed as
If $x>08, $y>1$.

with the comma outside of the formulas, but (x) is still a little confusing when
read quickly, because the two formulas tend to merge into one. To compensate for
the author’s bad style the savvy TEXnical typist will use \, to put an additional
space between the two formulas. Thus, you could type

If $x>08, \ $y>18$. or If $x>08,\ \ $y>18$.

to get
Ifz>0, y>1.

(This is one of those cases, referred to in the answer to Exercise 5.3, when
you wouldn’t want ApS-TEX to ignore the space before \.,, because you are
purposely using the combination |\, or _\y to get extra space.)

56 Chapter 8. Lousy Breaks? Try An Artful Display

If long formulas appear in text, then bad breaks are almost inevitable. So long
formulas are frequently “displayed”—they are set on a separate line like this:

1+1=2

In fact, formulas, even short ones, are often displayed simply to give them promi-
nence. The art of displaying formulas is actually an important aspect of math-
ematical style, so TEX will never make a decision to display a formula on its
own—you have to tell TEX to do this by enclosing the input in $$ signs instead
of $ signs, so that it enters “display math mode”. For example, the input

. If $f(x)=x+1$, then we will have $$f([x+1
1/ [x+21)=\{[x+1]/ [x+2]\}+1
=(2x+3) / (x+2) . $$

Consequently,...

produces the output
... If f(z) = x + 1, then we will have

fz+1)/[z+2]) ={lz+1)/[z+ 2]} +1 = 22+ 3) /(= + 2).

Consequently, ...

Notice that everything between the $$ signs got set as a one-line formula—
multi-line formulas don’t get explained until Chapter 15. Notice also that al-
though the comma was typed outside the $ signs, the period was typed inside
the $$ signs—otherwise the period would have appeared at the beginning of the
next line, right before “Consequently”!

Just as in ordinary math mode, spaces and single (carriage-return)s are ignored

within $$ signs, so the displayed formula
$$f (x)=(x+y) (x-y) $$

can also be typed as

3
f(x)=(x+y) (x-y)
$$

(I like to handle displayed formulas this way, because it makes them easy to spot
when I'm looking through the file later on, but this is purely a matter of taste.)

Chapter 8. Lousy Breaks? Try An Artful Display 57

e Exercise 8.6:
How would you type the following?

After the unspeakable exertions of the previous chapter, we have
finally succeeded in proving the fundamental result that

1+1=2,
and now we are going to try to prove that
2+2=4

As a first step in that direction, we will prove the distributive
law for multiplication.

¢ Exercise 8.7:
How would you get the following formula?

1+2+3+44+54+6+7+84+94+10+11+412
+13+144+154+164+ 17418419420 = 190

And how about the following?

at+b=c
A+B=C

@ Some journals don’t center displayed formulas, but instead set them like
1+1=2

and
1+1+1=3

with some fixed indentation from the left margin. Although this is probably done

merely to relieve the typesetter from the chore of centering the formula, TEX can also
set displayed formulas this way when the style calls for it.

Chapter 9. The 24 Level Of Complexity

Technical typesetting wouldn’t be such a big deal if spacing and line breaks
were the only concern. But mathematical formulas also convey a lot of informa-
tion through the positioning of text. Even if you're not a mathematician you
probably know that a? and a® are used as abbreviations for a x a (“a squared”)
and a X a X a (“a cubed”). And there are many other situations where math-
ematicians use superscripts 5°t UP high and subscripts set down low. YOU can’t use
positioning on the terminal since the input just goes in line by line, so all this
information has to be conveyed in some other way.

To tell TEX that you want a character set as a superscript, you simply have
to type = before it:

Type To get
$x"2% 22
$x"a$ z?
$x"\alpha$ x®
$2°x$ 27

Many keyboards have keys with an up-arrow 1t on them. Sometimes these keys
are simply used to move the cursor around, but if you are lucky you might have
a key that actually produces T on the screen; if so, this key will probably replace
the ~ key. Chances are (though you’d better check with a local expert) that you
can use T instead of ~, which is pleasant, since xt2 looks even nicer that x~2.
Of course, you might be so unlucky as to have neither ~ nor 1. In this case you
will have to make do with the control sequence \sp to give you superscripts:

$x\sp2$ x?
$x\sp a$ b
$x\sp\alpha$ fia
$2\sp x$ 27

Notice that now you have to be careful to have a space after the \sp when the
next symbol is a letter.

It’s something of a downer that most keyboards don’t having anything that
indicates “down” as surely as ~ or T signifies “up”. About the closest is the
“underscore” key _. So TEX uses _ to get subscripts:

$x_2%)
x_y Ty

58

Chapter 9. The 2™¢ Level Of Complexity 59

If you're lucky enough to have a key that produces { on the screen, find out if
you can use it instead of _. If you have neither _ or { you can use the control
sequence \sb instead:

$x\sb2$ T
$x\sb y$ Ty

The instructions ~ and _ apply only to the next single character, so there is
no ambiguity in the following:

$x"2y"2$ x%y?
$x ~ 2y "~ 2% x2y?
$x_2y_2% T2Y2
${}_2F_3% o F3

Notice the use of the empty group {} in the last example to get a “prescript”,
by having it be a subscript to an empty formula. You could also type simply
$_2F_3% in this case, because TEX will assume that there is an empty group
at the beginning of the formula if it begins with ~ or _. But it’s better always
to make your intentions clear, to TEX and to yourself, by supplying the empty
group.

e Exercise 9.1:
Try typesetting the two formulas $x + {}_2F_3$% and $x + _2F_3$, to see if
there is any difference between them.

When you want a whole expression superscripted or subscripted, just enclose
it in braces:

$z=x" {2y}$ 2=z
$2°{32}% 232
x_{10} T10
$x~{\{3y\}1}$ 213}

In the above examples, the superscripts and subscripts 32 and 19 have to be put
in braces because they are two printed symbols, even though 32 and 10 are, to
the reader, just one number. On the other hand, $x~\alpha$ on the previous
page didn’t require braces around \alpha, because \alpha is just one symbol,
even though the control sequence to name it is several characters long.

60 Chapter 9. The 2™¢ Level Of Complexity

e Exercise 9.2:
Explain how to type the following sentence:

If the n—1 numbers z1, ... , Zq4—1, Tat1, --. , Ty are all # x4 +1,
then f(x1,...,2,) > 0.

Since superscripts and subscripts are usually needed only in math mode, TEX
absolutely prohibits them outside of math mode, in order to assist it in detecting
omitted $ signs.

e Exercise 9.3:
Make a file with the following three paragraphs

This paragraph has the formula x"2$.

This paragraph has the formula $x~10}$
and the formula $x~{10$.

This paragraph has only text.

and see what error messages you get when you run it through TEX, hitting
(carriage-return) whenever necessary.

When a sub or superscript applies to a whole expression, mathematicians will
use parentheses (or brackets or braces) to indicate this:

$(x+1)"3$ (x4+1)3
$(x"2)"3% (22)3
$[x"2]1°3% [22]3
$\{x"2\}"{3y}$ {x?}3

Actually, mathematicians and experienced technical typists may be somewhat
surprised that these simple inputs worked—how did TEX know, for example,
that 3 was supposed to be a superscript to the whole expression (z + 1) or (22)?
The answer is very simple: TEX didn’t know—it just followed instructions very
literally and set the 3 as a superscript to the right parenthesis! On the other
hand, when you put a formula in braces, the exponent applies to the whole
formula:

${(x"2)}"38 (%)
${[x~21}"3 ELN
${ \{x"2\} }{3y}$ {22}%
${({(x"2)}"2)}"4$ (

Chapter 9. The 2™¢ Level Of Complexity 61

This might seem better from a logical point of view, but notation like (z2)? is
just as easy to read, so there’s no point making things harder for yourself; in
fact, this notation has been in use for hundreds of years, so the more “logical”
notation will probably seem subtly wrong to mathematicians—save ({,C2)3 for
special effects or emphasis.

¢ Exercise 9.4:
Explain how to type the following:

In a non-commutative group we have

(ab)~t =b"1a7!
and
(ab)—Q _ [(ab)_1]2 _ [b_la_1]2 _ b_la_lb_la_l,
but
(am)Z — am—i—m — a2m

A more interesting problem arises when you want a formula like

at".

To a mathematician this is very different from (a?)¢. In the formula a*" the a
has a superscript, but the superscript is not », rather it is the entire formula »°:

il

TEX thinks of such formulas just as a mathematician does: it’s the formula ¢
that appears as the superscript, so we have to put the appropriate input b~c
inside braces:

$$a"{b"c}s a’

Once you understand this principle, you will have no trouble producing all sorts
of formulas that would make traditional typesetters tear their hair out:

$a~{b"{c+1}}$ "
$2°{(2°x)}$ 2%
$27{2"{2~ (2" {2 x}}}}$ 92"
$2°{(a+b) "2}$ 2(a+?)
x_{y_2} Ty

$x_{y~2}1$ Ty

62 Chapter 9. The 2™¢ Level Of Complexity

Notice that in the formula a” the a is in the normal size font used for text,

called “t-size”, the superscript » is in a smaller “s-size”, and the . is in a still
smaller “ss-size”. But TEX doesn’t reduce the size after this, since such tiny
letters are already so difficult to read.

¢ Exercise 9.5:
Typeset the following displayed formula.

9T1F+ HTnt1 — 9Tn1 | (2911+--~+In)

e Exercise 9.6:
Explain how to type the following:

Suppose that %" = (z%)*. Prove that z =1 or 2.

e Exercise 9.7:
Describe the difference between the output of ${x"y}"z$ and $x~{y"z}$.

e Exercise 9.8:
Some computer systems use a construction like a~b~c to indicate a®*, but TEX
won’t accept such input. See what happens when you try to TEX a file that has
$a"b"c$ in it.
Although TEX won’t accept $a"b~c$ or a_b_c, a formula can have both a
superscript and a subscript, specified in either order.

$A"a_b$ Ag
$A_b”a$ Ag
$x"{31415}_{92}+\pi$ 2345 4
$\Gamma_{y~a_ b} {z_c"d}$ Fig

“b

Formulas like A%, are often resorted to by printers because Af is hard to set
on a Linotype machine. This is obviously not a problem for TEX, but many
mathematicians still prefer staggered sub and superscripts in certain situations.
For example, a formula like 27 is probably an abbreviation for x; x z;, where
the 7 plays quite a different role from the 2. In such cases many mathematicians
prefer z;2. You can force TEX to stagger by artfully barricading its path with

empty groups {3}:

$x_i{}"2$ or ${x_i}"2%$;2
$R_i{}F {jkI{}_1$ Ri*,

Chapter 9. The 2™¢ Level Of Complexity 63

The second of these examples is not a weird product of the author’s imagina-
tion; rather, it is a weird product of “tensor analysis”, a branch of mathematics
waggishly defined as the study of sub and superscripts, where exact positioning
is important. If the author uses such notation, it should be up to Em to indicate
Eir intentions clearly, but there’s no harm checking first. You might also want to
check about the author’s preferences for z7. If you aren’t sure, remember that
it is easy to change x_i"2 and x_i"3 to x_i{}"2 and x_i{}"3—a good text
editor can really facilitate replacing ~ by {3}~ in the necessary places—but it’s
not so easy to change x~2_i and x"3_1 to x_i{}"2 and x_i{}"3. For this reason,
I always try to remember to type subscripts before superscripts.

¢ Exercise 9.9:
Explain how to type the following:

Suppose that there is no A\ with =; = Ay;, ¢ = 1, 2. Then the
equation (Ay; — z1)(Aye — x2) = 0, i.e., the equation

N (12 +y22) = 2M @191 + T2y2) + (712 +112) =0

has no solution \.

As you may have noted from Exercises 9.2, 9.4 and 9.5, the extra spacing
around binary operators like + and — disappears when they are in sub or super-
scripts. Binary operators can even occur as sub or superscripts all on their own.
For example, * is a binary operator when used in constructions like

$(f+g) (08 (f = g)(x)
but you can also type

$z_{ij}"*$ z;
$£°*(x) \cap f_*(\nw$ [(x) N fu(v)

And you can even get things like

f_+ f+
f_- I-

though this last input would probably look better with extra braces:

$£_{+}$ fr
$£_{-}% s

64 Chapter 9. The 2™¢ Level Of Complexity

Of course, you probably don’t want the bother of typing braces unnecessarily,
but this is another situation where a customizable editor can make things a lot
easier. You can arrange for a single key stroke to produce “{} or _{}, and then
move the cursor back a character, so that you are ready to type the superscript
or subscript and then skip over the right brace. This takes one extra stroke
when you don’t need braces, but it saves lots of typing whenever you do need
them. Such an arrangement has the added advantage that you won’t start a
multi-symbol superscript with a left brace and then forget to supply the closing
right brace (a very easy error to make).

In addition to superscripts and subscripts, mathematicians often use the no-
tation f' (“f prime”). TEX has the control sequence \prime, but if you type
f\prime you’ll get f/, which isn’t what you want at all! Instead, you have to
treat primes just like any other superscript:

$£"\prime$ b

Your initial reaction might be: Why does TEX have to treat primes in such a
complicated way—why not have \prime be a smaller prime mark that’s already
shifted up into the superscript position? The answer to this is very simple:
primes often occur together with subscripts, as in

$f_2"\prime$ f3

If the prime were simply a symbol on its own it would occur after the fs, instead
of right above the 2. Somewhat mollified, you still might think that it’s going to
be a bit of bother to type ~\prime every time you need a’, and if you’re thinking
ahead you can imagine what a nuisance it’s going to be to get f”’—you’ll have
to type £ {\prime\prime\prime}! Fortunately, TEX has a special device to
circumvent this problem. When TEX is in math mode, it will translate ’ into
“\prime; moreover, ’’ will be translated into “{\prime\prime} and ’’’ will be
translated into “{\prime\prime\prime}, etc.

$£° [g(x)1g’ (x)$ f'lo(@)lg' (x)
$y_1°+y_277+y_377$ y’1+y’2’+yg/

This is a / example of how easy it is to use TEX.

Chapter 9. The 2™¢ Level Of Complexity 65

e Exercise 9.10:
Explain what is wrong with typing the following:

In the formula $°‘x+y’’$ the $+$ sign is a binary operator.

AMS-TEX doesn’t give you any special way of getting subscript primes, since
they are used so rarely; for constructions like F;(w, z), you’ll simply have to type
$F_\prime(w,z)$. You might also want to use \prime in situations like this:

$g~{\prime2}$ g
But you can also manage with an empty group:
$g’{3"2% g'?

e Exercise 9.11:
Why not type simply $g’~2$7

e Exercise 9.12:
Explain how to type the following displayed equation:

f(n+2) — [f(nJrl)]/ — [f('n)/]/ — [f('n)]//

Before leaving this topic, we ought to acknowledge one possible pitfall when
you are typing superscripts and subscripts: on rare occasions braces are needed
even though they would seem to be unnecessary. For example, suppose that we
wanted the symbol A. You might think that it would be safe to type

A_\ne

since it’s perfectly OK to type A_α to get A,. But if you type A_\ne
you'll get the strange result ‘A ,=’! That’s because \ne isn’t really a single
symbol at all. It’s simply an abbreviation for \not=. Thus TEX takes your
input A_\ne, translates it into $A_\not=$, and then dutifully sets the / as a
subscript to the A! If you are blessed with a customizable editor, and always
have braces around your sub and superscripts, you won’t have to worry about
such anomalies. But even if you aren’t, you shouldn’t worry very much. Such
situations occur rarely enough and it’s sufficient to be aware of them, so that
you won'’t be totally freaked when they do arise.

e Exercise 9.13:
See what happens when you try to TEX a file that contains the following.

This file contains only the formula A_\notin.

Chapter 10. Our Problems Mount

In a formula with superscripts and subscripts, the symbols still go in “from
left to right”. But many formulas involve more critical dislocations, with one
subformula placed on top of the other. ApS-TEX has several control sequences
to deal with these problems.

The most important such control sequence is \frac, which produces

n+1
n+3

(%)

and similar fractions. \frac is a control sequence with two arguments, the
numerator above the fraction line, and the denominator below the line; the
fraction (%) was produced by typing

$$\frac {n+1}{n+3}$$

This displayed fraction is set in TEX’s “d-size”, with the numerator and denomi-
nator each in the usual t-size. If we type $\frac {n+1}{n+3}$ we get Z_jr_}s Now
the whole fraction is in t-size, which means that its numerator and denominator
are in the smaller s-size.

Notice that (x) could also have been typed as

$$\frac{n+1} {n+3}$$

The space isn’t required after the \frac in this case, since it is followed by the
non-letter {; and the space before {n+3} is ignored, not only because we are in
math mode, but also because TEX always ignores spaces when looking for any
arguments of a control sequence.

Fractions produced by \frac are automatically positioned correctly with re-
spect to binary operators and relations,

2
$$z=\frac{x+y 2}{x-y"2}-1$$ z= ii—;} -1

so you don’t have to worry about adjusting their position. Notice also that

fractions like

1 N -1
and _
n—+1 2

66

Chapter 10. Our Problems Mount 67

occur quite frequently, so you often get the opportunity to omit some braces.

$$\frac23$$ g

$$\fraci{n+1}$$ 1
n—+1

$$\frac{N-1}2$$ %

Since the numerator and denominator of displayed fractions are in t-size, when
you put fractions within fractions you get results like

$$\frac x{1+\frac x2}$$ x
14z
T4

$$\frac {\frac x2+1}2%$ 2;_

In both of these cases it would probably be better to convert the fraction § to
the “slashed form” x/2:

x
£ 1+x/2 —_—
$$\frac x{1+x/2}$$ 1+ 2/2
241
$$\frac {x/2+1}288 §17§57
But some authors will prefer 5, and others might insist on having
x
S +1
Lx and QT
1 —
+ 2

x
with the 5 in d-size. ApS-TEX has the control sequence \dsize to force a
formula into d-size. For example, we got 5 to appear in text by typing
$\dsize\frac x2%
T x
And to get 5 + 5 to appear we just have to type

$\dsize\frac x2+\frac x2$

—mnote that \dsize causes a switch to d-size for the whole formula; in this respect
it is analogous to \rm, \it, \bf and \sl, except that its effects are limited to
the formula within which it appears.

68 Chapter 10. Our Problems Mount

e Exercise 10.1:
How were the displayed formulas

x
T
14+ =
+ 2
and "
—+1
2 +
2
typed?

¢ Exercise 10.2:
Typeset the following:

1 1
Hoélder’s Inequality: Let 0 < p,q < oo with E—FE =1.1ff € LP(u)
and g € L9(p), then fg € L'(u) and

gl < W fllpllglle-

The answers to Exercises 10.1 and 10.2 should explain why \dsize has been
designed to work the same way that \rm, \it, \bf and \sl work in text, rather
than as a control sequence with an argument: when you have to force a fraction
into d-size it’s usually necessary simply to insert \dsize before it—extra braces
will be needed only rarely. But ApS-TEX actually provides you with a much
better way of getting d-size fractions, one that will eliminate all worries about
braces. The control sequence \dfrac will automatically produce a fraction in
d-size; thus, typing \dfrac ab is equivalent to typing {\dsize\frac ab}. You’ll
find \dfrac especially convenient when you type \frac the first time through,
and then after seeing the output decide that a d-size \frac was really needed—
all you have to do is type an extra d before the £. You can save \dsize for rare
occasions when d-size is needed for some other type of construction.

¢ Exercise 10.3:
Redo Exercise 10.1 using \dfrac.

As you might suspect, AAS-TEX also has the control sequence \tsize, to
force a formula into t-size.

e Exercise 10.4:
Explain how to type the following displayed formula.

fa=3(f+9)7— =4

Chapter 10. Our Problems Mount 69

It turns out that t-size fractions are often desired within displays, so AaS-
TEX also has \tfrac to get a t-size \frac, thereby eliminating any concern about
braces.

e Exercise 10.5:
Redo Exercise 10.4 without using \tsize.

When a fraction appears in a superscript, it is in s-size, which means that its
numerator and denominator are even smaller, in ss-size:

$e~{-n+\frac1i{12n}}$ e~ 1

In superscripts, the slashed form of a fraction is almost always preferred, but once
again, some authors may be picky, and the non-slashed form may be standard in
certain situations. (Traditional typesetters have a terrible time with fractions in
s-size, but TEX won’t complain about them—only the poor readers will complain
about the tiny symbols.)

AMS-TEX also has \ssize and \sssize to force a formula into s-size or ss-
size, but you will hardly ever need them. Naturally, \dsize, \tsize, \ssize
and \sssize all work the same way, forcing a change of size for a whole formula,
and thus behaving analogously to the font changes \rm, \it, \s1 and \bf; so you
should think of them as “switch to d-size”, etc. You don’t have to worry about
running into similar anomalies later on—these are the only AmMS-TEX control
sequences that work like this.

In addition to fractions, mathematicians frequently use the special concoction

n
k
which is called a “binomial coefficient”. You don’t have to have any idea what

that means, just remember that \binom is used to produce it, so that the above
display was produced by typing

$$\binom nk$$

Aside from the fact that the output looks a little different, \binom works exactly
like \frac, with the same conventions for the size of the top and bottom formulas:

$$\binom n{\frac k2}$$ (Z)
2
$$\frac{\binom nk}2$$ %

70 Chapter 10. Our Problems Mount

e Exercise 10.6:
Explain how to improve the first example to either

() ()
()

2
As you might have guessed, AN S-TEX also has \dbinom and \tbinom to pro-

duce a \binom that is in d-size or t-size.

and the second example to

e Exercise 10.7:
Redo the last part of Exercise 10.6 without using \dsize.

Fractions and binomial coefficients are by far the most common constructions

where one formula is stacked on top of another. But there are several others you
may come across. For example, in certain situations the author might want a fraction
with a thicker fraction line, like

(u/ ° u—l)(v// Ou—l) (U’ o u—l)(u// ° uil)
(wou~') (v ou~')
(U/ o u—1)2
AMS-TEX has \thickfrac for such fractions, and it’s also possible to vary the thickness
of the fraction line. And then there’s the “Legendre symbol” (%), which is like a
binomial coefficient, except that it has both a fraction line and parentheses, not to
mention the “Euler number” <Z>, which is like a binomial coefficient, except that it
has “angle brackets” (and) instead of parentheses. ApS-TEX doesn’t have special
control sequences for these and similar combinations that mathematicians may concoct,
but it does have a “generalized fraction” mechanism by which you can produce any
such special symbols that you will need. Details will be found in Part 3.

AMS-TEX’s control sequence \frac is constructed from TEX’s control sequence

\over, which could also be used to produce fractions, but ApMS-TEX users aren’t
supposed to know about \over, because \frac is easier to use. When you misuse
\frac, however, things can get more complicated, because TEX first translates \frac
into its own terms before figuring out what has gone amiss.

e Exercise 10.8:
Make a file containing the following three paragraphs

This paragraph has $\fraci{a+b$ and $\frac la+bl}$.
This paragraph has $\fraci{a+b$.

This paragraph has only text.

Chapter 10. Our Problems Mount 71

and run it through TEX. Hit (carriage-return) for the first two error messages, but when
you get a

Runaway argument?

message, which we’ve never seen before, type h or H for help before hitting (carriage-
return) once again.

Chapter 11. Benefitting From TEX’s Largess

Although + is a “binary operator”, which connects two terms in formulas like
a + b, this same binary operator can be used to connect several terms, as in
the formula a + b + ¢ + d—the sum of a, b, ¢ and d. But when mathematicians
want to indicate the sum of many numbers aq, as, ..., a,, they usually use
a special expression like Z?:l a;. Although it isn’t necessary to understand
exactly what this means, certain features of such a formula are important. The
> sign is basically an upper-case Greek sigma, but it’s usually larger and in a
different type-style from the Greek . To get this special) symbol you type
\sum (in math mode). Of course, it’s often hard to distinguish ¥ from) in a
handwritten or typewritten manuscript, but one of the tell-tale signs of a) are
sub and superscripts like the | ;. These smaller formulas are called the “limits”
of the }_, and something special happens when you display a formula with .
When you type $\sum_{i=1}"n a_i$ you get > ., a; in text, but when you
type the displayed formula

$$\sum_{i=1}"n a_i$$

you get
n
D a
i=1

Notice that the Z has gotten even larger, and the “limits”, though they have
been typed as sub and superscripts, magically migrate to positions below and
above the Z sign.

> is called a “large operator”, and several other binary operators have “large”
counterparts. For example, the binary operators \cup (U) and \cap (N) have
corresponding large operators \bigcup and \bigcap. In text these control se-
quences give | J and [, but in displayed formulas they will give U and ﬂ, and
“limits” that were typed as sub and superscripts will end up below and above
the symbols. Other large operators will be found in Appendix F.

72

Chapter 11. Benefitting From TpX’s Largess 73

e Exercise 11.1:
How would you type the following formulas?

n+1

(1) (f- g)("+1)(a) — Z (n Z 1) f(k)(a)g(n+l—k)(a)

k=0

2) 0=(1+-1)" :i(—nj (”)

=0 J

n

(3) S a3y sz vt +) _wity;®
=1 =1

i#]
(4) ZZZQW ik Chi
(5) [X, So(00)] — [E°X, Sp(c0)]

(7) xX\Jai=x\4

iel iel
Sometimes a large operator has a multi-line limit, like
> P(ij)
0<i<m
0<j<n
While _ or \sb is used to get a single-line limit, you would get this formula by
typing
$$\sum \Sb O\le i\le m\\ 0<j<n \endSb P(i,j)$$

Between \Sb and \endSb each \\ indicates a new line. Similarly, there’s \Sp
. \endSp to get multi-line upper limits.

e Exercise 11.2:
Reset formula (4) in Exercise 11.1 as

E aijbjrcri

1<i<p
1<j<q
1<k<r

74 Chapter 11. Benefitting From TpX’s Largess

e Exercise 11.3:
See what happens when you have

$$\sum\Sb O0\le i\le m\\0<j<n $$
\enddocument

in your file, with \endSb missing from the displayed formula.

There’s another “large operator” that acts rather differently from \sum. If you
type \int in math mode, you will get the symbol [that mathematicians call an
“integral sign”, and in a displayed formula the integral sign grows larger, just
like a \sum sign. But the “limits” won’t move to the bottom and top of the [
sign.

$\int_a~b$ N
b
$$\int_a"b$$ /

In addition to \int, A\S-TEX also has \oint, which produces § and ?{

And \int’s often occur in groups, like [[[and [[[[. But you shouldn’t type
something like $\int\int$ because this gives [[with too much space between
the symbols. Instead use the special symbols

$$\iints / /
$$\iiint$$ ///
$$\i11int$$ ////
$$\idotsint$$ //

The proper treatment of “limits” on \sum and \int is not actually decided
by TeX, but is determined by the particular style you are using. Some journals
set limits on \sum as sub and superscripts even in displays, and some set limits
above and below [signs in displays. Even when a journal normally sets limits

Chapter 11. Benefitting From TpX’s Largess 75

on [signs to the right, it is possible to force the limits on an \int to be set
below and above when particular formulas seem to demand this. For example,
in the equation

(+) [- _; /a L

o(M-Ur,U;)

the long limit was set at the bottom of the first integral because this looks better

than
/ r*11
a(M—-Ur_,U;)

If you type \int\limits, then TEX will set any sub and superscripts the \int
may have as “limits”.

¢ Exercise 11.4:
How was equation (x) typed?

e Exercise 11.5:
Explain how the displayed formula

==l

Although TEX conveniently selects a different style for large operators in text

(=D

should be typed.

o0
and in displays, authors sometimes want formulas like Z
n=1

looks a little too squashed.

to appear in

text, because the usual text style formula ZZOZI (711)”

Of course, you can do this simply by typing

$\dsize\sum_{n=1}"\infty\frac{(-1) "n}n$

Such constructions are often used in books, but journal editors aren’t fond of
them, because of the paper that they waste, not to mention the uneven appear-
ance that they give to the page. A pleasant compromise is to type

$\sum\limits_{n=1}"\infty\frac{(-1) "nin$

0 n
which gives > %; such constructions often make formulas a lot more read-
=1

e
able without sacrificing too many trees.

76 Chapter 11. Benefitting From TpX’s Largess

@ \limits has its obverse \nolimits, which causes the sub and superscripts on a
large operator not to be re-positioned, even if they ordinarily would be. \limits
and \nolimits should be used only for special occasions, however. If you don’t like the
conventions used by the amsppt style for limits on \sum’s and \int’s, you shouldn’t use
\limits and \nolimits to correct each formula. The right thing to do is to change the
conventions permanently, thereby creating a somewhat new style of your own. Part 3
explains how this can be done.

Chapter 12. Creating Your Own Space

Although TEX can usually figure out the correct spacing in formulas, it some-
times needs a little coaching. For example in the formula

/abf(:lj) dx

the dz ought to be separated from the other symbols by a small amount of space,
a little gap that printers call a “thin space”. This little space is so useful for
adjusting math formulas that TEX has the extremely simple control sequence \,
to specify it. Thus, the proper way to get the formula above is to type

$$\int_a"bf (x)\,dx$$

You will also want to put a thin space before dx or dy or dwhatever in calculus
formulas like the following:

$dx\,dy=r\,dr\,d\theta$ drdy = rdrdf

d
But don’t use \, before an expression like % or before the dz in dy/dz.

e Exercise 12.1:
How should the following formulas be typeset?

(1) ydr —xdy
(2) xdy/dx
0 2

Lt
() /dy:/;l_gdx

e Exercise 12.2:
How can you get the formula

dz
dz_d_y
&~y

dx

d d
with the d—; and % separated by a slightly longer fraction line?

77

78 Chapter 12. Creating Your Own Space

AMS-TEX allows you to use \, outside of math mode also, but you will seldom

need it, except for special effects. One such case is an expression like ‘55 mi/hr'—
this looks best when the space after ‘55’ is just \, instead of an ordinary interword
space.

e Exercise 12.3:
How would you typeset each of the following?

(1) 1 ml equals 1.000028 cc
(2) g =9.8m/sec’
(3) 0° C equals 32°F

Quite a different sort of spacing problem occurs when you have a display
containing a main formula with a side condition, like

F,=F, 1+ F,_o, n > 1.

In addition to the thin space, printers have a much larger amount of space called
a “quad space”, and tradition has established that two quad spaces should be
inserted between a main formula and its side condition. TEX has the control
sequence \quad to specify a quad space, and it even has the special abbreviation
\qquad to stand for \quad\quad, so you can type the above formula as

$$
F_n=F_{n-1}+F_{n-2},\qquad n>1.
$$

e Exercise 12.4:
Explain how to get the following displayed formula.

* t—ib iat ab
T dt = " Ey(ab), a,b> 0.
0

TEX is capable of producing spaces of any amount, but in this chapter we
haven’t even bothered to introduce the various measurements that TEX knows
about (they include inches, centimeters, the printers’ points and picas, and many
others), because the control sequences \, and \quad and \qquad usually provide
just the sort of spacing you need. There are a few other situations where formu-
las can be improved by the judicious insertion or removal of a thin space, and
AMS-TEX has lots of cute devices to deal with all sorts of other special spacing
problems. But such subtleties can be postponed until Part 3.

Chapter 13. Fascinating Things That Expand By Themselves

When you type a \frac, the fraction line automatically grows to the proper
length, sufficient to encompass both the numerator and denominator. TEX has
many other control sequences that select symbols whose size depends on the
context. For example, you can \underline or \overline a formula:

$$\underline 4$$ 4
$$\underline{\underline{4+x}}$$ 4+
$$x~{\underline n+m}$$ prtm
$$\overline{\overline{x"3}+x"{x"3}}$$ 3 + =
And you can put arrows of various sorts over a formula:

$$\overrightarrow{x+y}$$ T y>
$$\overleftarrow{x-y}$$ r—y
$$A"{\overleftrightarrow{x+y}}$$ ATy

You can also get arrows under your formulas with \underrightarrow,
\underleftarrow and \underleftrightarrow. The most common arrows,
\overrightarrow and \underrightarrow, have the shorter names \overarrow
and \underarrow. Of course, if you were using such arrows frequently you would
want to define your own shorthand names, as explained in Chapter 18.

Arrows over and under formulas shouldn’t be confused with other arrows
that act like binary relations. We've already come across \rightarrow, and
\Longrightarrow; other arrows are listed in Appendix F.

e Exercise 13.1:
Explain how to type each of the following:

(1)
— —
The sum of the vectors OA and OB is defined by

—

OA+ OB = OP,

where OAPB is a parallelogram.

79

80 Chapter 13. Fascinating Things That Ezpand By Themselves

In any triangle ABC we have

AB+ BC > AC.

The Pythagorean Theorem: If ZC of AABC' is a right angle,
then -
AB?="AC*+BC”.

¢ Exercise 13.2:
How do you type the following formula?

Bij A5

More interesting size changes occur when you take the square root of a formula,
with \sqrt:

$$\sqrt2$$ V2
$$\sqrt{\frac ab+1}$$ % +1

The output from

$$\sqrt{1+\sqrt{1+\sqrt{1+
\sqrt{i+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}}}$$

shows a variety of available square-root signs:

L4+4|1+ 1+\/1+\/1+\/1+\/1+x

The four smallest square-root signs are made up of distinct characters, together
with overlines of the appropriate length, but the three largest signs are all es-
sentially the same, except for a vertical segment ¢ |’ that gets repeated as often
as necessary to reach the desired size.

@ More complicated roots, like /z, are mentioned in Part 3.

Chapter 13. Fascinating Things That Ezpand By Themselves 81

e Exercise 13.3:
Explain how to type the following:

The solutions to ax?+bx+c = 0 are given by the quadratic formula:

o —b+ Vb?% — 4ac
o 2a '

e Exercise 13.4:

Suppose that you want the formulas 27 and 2VZ in your file. What happens
if you type $2"\overline y$ and $2~\sqrt x$, omitting the braces around

\overline y and \sqrt x7

Large parentheses are constructed in a manner similar to large square-root
signs: once TEX gets beyond a certain size, it combines standard tops and bot-

toms with a repeatable extension:

(((((u»)))))

There is one important difference between parentheses and square roots, however.
TEX will not choose the appropriate size parentheses unless you formally request
them. To get a formula enclosed in parentheses of the right size, type

\left(formula \right)

For example,

$$\left (\frac1{1-x"2}\right) "2$$

e Exercise 13.5:
Typeset the following:

(1)

”

For F = 0 we have the “degenerate hyperbola

—I—E—i -C _|_£
TT9A A \YTaoc)

82 Chapter 13. Fascinating Things That Ezpand By Themselves

(2)

The nth Fibonacci number F), is given by

<1+\/5>n (1—\/g>n
2 B 2
F, =

" V5

Similarly, by typing
\left[formula \right]

you will get variable size brackets around the formula:

$$\left [\frac{a+b}2\right] $$ [a ;r b}

(If you are using \lbrack for [and \rbrack for], you can also type things like
\left\lbrack and \right\rbrack.)

e Exercise 13.6:
Typeset the following;:

For 0 < z <1 we have

—_

f@) =17
x
Variable size curly braces are also available—remember to type \{ and \}:

$$\left\{\frac1{1-x"2}\right\}$$ {#}

1— 22

e Exercise 13.7:
Typeset the following displayed formula:

in={[Ifl”}%

Chapter 13. Fascinating Things That Ezpand By Themselves 83

Parentheses, brackets and braces are only a few of the “delimiters” that can
go after \left and \right. Among the other delimiters there are

vertical line: | | or \vert
double vertical line: || \| or \Vert
left floor bracket: | \1floor
right floor bracket: | \rfloor
left ceiling bracket: [\lceil
right ceiling bracket:] \rceil

(less frequently used delimiters will be found in Part 3). When used alone, the
control sequences on the right produce the normal text size symbols on the left,
but when used with \left and \right they produce variable size symbols.

e Exercise 13.8:
How is the displayed formula
HEa
a |al
typeset?

You can actually put any delimiters you want after \1eft and \right—they
don’t have to be the left and right members of a matching pair. For example,
you can type

$$x\in\left (\frac ab,\frac cd\right]$$ x € (g E}
or even (yuck)

$$x\in\left]\frac ab,\frac cd\right[$$ T € } %, C—Ci [

When you have weird constructions like the second of these examples, \left
and \right do more than simply select the correct size for the delimiters; they
also help provide the proper spacing in formulas. TEX normally treats | as a right
delimiter, and if you typed $x\inla,b[$ you would get = €]a, b[, because TEX
doesn’t leave any extra space between a binary relation and a right delimiter.
But \left] tells TEX to treat the] that it selects as a left delimiter, so if you
type $x\in\leftla,b\right [$ you will get x €]a, b[; in this particular situation
the brackets are ordinary size, of course, but now the spacing comes out right.

e Exercise 13.9:
For mathematicians who insist on using such yucky notation, explain the right
way to type the following formula:]—oo, T x |—o0, T[.

84 Chapter 13. Fascinating Things That Ezpand By Themselves

There are two delimiters that are rather special:

left angle bracket \langle
right angle bracket) \rangle

These symbols are not constructed with repeatable extensions and therefore have
a maximum size; in the font used for this book the largest angle brackets you

can get are

If your formula happens to be enormously tall, TEX will simply settle for the
largest pair available. By the way, TEX allows you to type \left< and \right>
as well as \left\langle and \right\rangle, even though < and > aren’t the
same as (and).

e Exercise 13.10:
Typeset the following;:

The connection V is compatible with the metric if and only if
d DV DW
E<‘/aw> = <W’W> + <V7 T > -

In a \left...\right construction, TEX figures out the proper size for the
delimiters by first looking at the formula between the \1eft and the \right. So
\left’s and \right’s have to pair up correctly, just like curly braces.

e Exercise 13.11:
Typeset the following:

We derive the quadratic formula by “completing the square”:
b ? N
T+ — -—— .
2a a 4a?

As a matter of fact, TEX mentally inserts braces around \left...\right
pairs, so the effect of the size changes \dsize, \tsize, ... is restricted by such
pairs.

b
ar’+br+c=a <x2 + —x+ E) =a
a a

Chapter 13. Fascinating Things That Ezpand By Themselves 85

e Exercise 13.12:
Typeset the formula

1 n 1 n
—+ a0)| —=+ bi)
using as few strokes as possible.

The requirement that \left’s and \right’s match up might cause you some
consternation when you have to typeset a formula like

dx?

dx

where there aren’t matching delimiters. To handle such cases, TEX allows a

period after \left and \right, to produce the “empty” delimiters ‘\left.’ and

‘\right.’ that keep TEX well-balanced, but that don’t produce any symbol in
the output. Thus, you can type

$$\1left.\frac{dx"2}{dx}\right | _{x=a}=2a$$

¢ Exercise 13.13:
What happens if you type

$$\left,\frac{dx 2} {dx \right|_{x=a}=2a$$

= 2a

r=a

with a comma mistakenly typed instead of a period?
e Exercise 13.14:
What happens if you omit the \1left. completely and simply type the following?
$$\frac{dx"2}{dx}\right | _{x=a}=2a$$

e Exercise 13.15:
How do you get the following displayed formula?

2]

dx

You will also want to use a blank delimiter along with one other delimiter,
the last that we will mention here. This is a variable size /, which has a largest
size, just like the delimiters (and). This delimiter can be obtained with either
\left/ or \right/.

d

It is important for the \1eft/ or \right/ to enclose the large part of the formula,
since the size of the delimiters is based on what goes between \1eft and \right.

$$\left.\frac{c+1}d\right/x"2$$ C+1/ 22

86 Chapter 13. Fascinating Things That Ezpand By Themselves

e Exercise 13.16:
How should the displayed formula

5 Jc+1
e

Despite the convenience of \left...\right constructions, there are certain
occasions when you will want to specify the exact size of delimiters yourself. For
example, TEX has \bigl and \bigr to give delimiters just slightly bigger than
ordinary ones:

be typeset?

$\bigl (x-s(x)\bigr)\bigl (y-s(y)\bigr)$ (z—s(2))(y — s(y))
$\bigl [x-s [x]\bigr]\bigl [y-s[y]\bigrl$ [z — s[z]] [y — s[y]]
$\bigl| Ixl|+lyl \bigrl$ |\x|+|yH
$\bigl\1lfloor\sqrt A\bigr\rfloor$ L\/ZJ

Here \left and \right would not have the same effect, since they don’t make
things any bigger than necessary; the input

$\left[x-s[x]\right]\left[y-s[yl\right]$

would simply yield [z — s[z]] [y — s[y]]-

(There’s one other important difference between \bigl and \bigr and \left
and \right: Although the constructions \bigl] and \bigr [cause TEX to regard
the big | as a left delimiter, and the big [as a right delimiter, \bigl and \bigr
do not group things; you can even have a \bigl in a formula without a matching
\bigr.)

Although \big delimiters can do wonders for the readability of certain formu-
las, they may not go over too big with the copy editors of mathematical books
and journals, where standard size parentheses have been nestling next to each
other for ages. In a formula like (z + f(z))? there’s really no need to use bigger
parentheses for the outer pair, just as there is no need to raise the superscript 2
any higher. So use \big delimiters with restraint. Mathematicians are so used
to the old style that they may discomforted by the “improvements”.

There are also times when \left...\right gives delimiters that are too big,
namely when you use \left and \right to enclose a \sum with limits:

n 2
$$\left(\sum_{k=1}"n A_k \right) 2$$ (Z Ak>
k=1

Chapter 13. Fascinating Things That Ezpand By Themselves 87

It usually looks better to let the limits protrude slightly beyond the parentheses,
n 2
()
k=1

so you need to request a specific size. In addition to the \bigl and \bigr
delimiters, which are just a little bigger than ordinary ones, TEX also has \biggl
and \biggr delimiters. These delimiters are the size that TEX would choose
around a formula that is two lines tall:

$$\left [\frac bd\right]$$ b
$$\biggl [\frac bd\biggr]l$$

and they are also the ones you should usually use around \sum:
n 2
$$\biggl (\sum_{k=1}"n A_k \biggr) 2$$ (Z Ak)
k=1

e Exercise 13.17:
Typeset the following:

(1) (Zn: xiy¢>2 = zn:(wiyi)z + > wiywy;

=1 i=1 i#j
@ w(n) = mZ_ K:Mm/kvfm/ku)lJ
Q e (Am[L_JED :iz:m*(AﬂEi)

e Exercise 13.18:
How would you typeset the following?

0 (Vasa)

Chapter 14. A Roman Orgy

In math formulas, TEX automatically sets letters in italics, but sometimes you
want ordinary roman letters, as in the formula

y = f(x 4 constant)

AMS-TEX allows you to duck out of math mode for a moment by means of
\text: you can get the above formula by typing

$$y=f (x+\text{constant}) $$

In this formula the whole construction \text{constant} is treated simply as an
ordinary symbol like x or y, and the spacing is determined accordingly.

Notice that \text is a control sequence with an argument, and only the argu-
ment is returned to ordinary text; things that come after the argument are back
in math mode. So if you type

$$f (x)=x"{17}+\text{lower order terms}+e”x$$
you'll get
f(z) = 2'" + lower order terms + e”

e Exercise 14.1:
Typeset the following:

g(x) = f(x + constant) + f(z — constant)

Within \text you can change fonts, just as in ordinary text. For example, if
you type

$$f (x)=x"{17}+\text{terms of {\it different\/} order.}$$

you will get
f(z) = 2'" + terms of different order.

Here {\it different\/} occurs within \text, so the result is no different from
what you get when you type {\it different\/} in text. On the other hand,
if you simply typed $different$ you'd get the formula dif ferent, which looks
quite weird, partly because the italic letters used in math formulas are a little
wider, but mainly because the spacing, appropriate for formulas rather than
text, is quite different in many cases.

88

Chapter 14. A Roman Orgy 89

e Exercise 14.2:
What is wrong with typing the following?

$$y=f (x+{\text constant})$$

(For some reason this is a very common error among beginning ApS-TEX users.)

When you are mixing formulas with \text’ual stuff, it’s important to remem-
ber that spaces always die of exposure in math mode. So if you want to typeset
the displayed formula

I'(n)=(n-1)! when n is an integer
you’d better not type
$$\Gamma (n)=(n-1) '\qquad\text{when} n \text{is an integer}$$
or you will get
I'(n) = (n—1)! whennis an integer !
Instead you have to type
$$\Gamma (n)=(n-1) '\qquad\text{when }n\text{ is an integer}$$

Now the space after when and the space before is both survive, since they were
typed within the protective environment of \text.

Fortunately, there’s a much more straightforward way to get the spacing right
in such situations. Not only can you switch fonts within \text, you can also
switch right back into math mode, so that you can have math within \text
within math! Thus, you can type

3
\Gamma (n)=(n-1)! \gquad \text{when n is an integer}
$$

At first this may be a little confusing, but you’ll soon get used to the idea of
nesting modes inside of each other like those

mysterious
Chinese

e Exercise 14.3:
Typeset the following:

F,=F, 1+ F, 5 for every n > 1.

90 Chapter 14. A Roman Orgy

e Exercise 14.4:
Typeset formula (1) of Exercise 12.3 as 1 ml = 1.000028 cc and typeset formula
(3) as 0°C = 32°F.

e Exercise 14.5:
What do you think happens if you compound the mistake of Exercise 14.2, and
type the following?

$$\Gamma (n)=(n-1) '\qquad{\text when n is an integer}$$

There’s one important difference between math formulas $...$ that appear
in ordinary text and those that appear in the \text of a displayed formula: in
the latter case, math formulas are automatically set in d-size. Thus, if you type

3
f(a)>f (b)\qquad\text{provided that $\frac a{b+1}>\sqrt3$r.
3

you’ll get

f(a) > f(b) provided that bj_ D> V3,

Since we’re in a display, which already takes up extra space, there’s really not
much point trying to save space by setting the formula ;%5 > V3 in t-size. So
AMS-TEX automatically gives you d-size (though you can always get t-size by
using $\tsize...$ within \text).

e Exercise 14.6:
Typeset the following:

We have
nrt & ;
% = Z kP + terms involving Z k" for r < p.
p + k=1 k=1

It follows by induction that

n
DK
k=1 . . .
~—— = —— + terms involving negative powers of n.
Pl P+l g 1neg p

Chapter 14. A Roman Orgy 91

Mathematicians often allow text to wander quite freely within their displayed
formulas, so you sometimes have to use considerable judgment to choose proper
spacing. Authors ought to help out, by indicating where larger and smaller
spaces are appropriate, but TEXnical typists still have to express their intentions
in terms of standard TEX spacing.

e Exercise 14.7:
Decide how the displayed formulas

X, =X if and only if Y=Y, and Z, =7

and
Y,=X,+1 and Z,=X, -1 for all n > 0.

can be typeset.

There’s one other important difference between \text and ordinary text:
\text{...} creates just one line of text, an unbreakable unit that can’t be re-
arranged into a paragraph. This is usually just what you want in a display, but
sometimes a side condition is so long that it has to be set as a small paragraph
of text; this contingency is discussed in Part 3.

If you use \text within non-displayed formulas, any math formulas $...$
within \text just get set in t-size. But it isn’t a very good idea to use \text
this way, since you get an unbreakable line of text, with a good chance of creating
an Overfull box. Usually the best strategy is to slip in and out of math mode.

e Exercise 14.8:
What would be the best way to typeset the following?

Everyone would like to know whether or not the set {p : p and
P+ 2 are prime } is infinite or not!

(Use a plain : for the colon in this formula, but put thin spaces between the
braces and the rest of the formula—this “set notation” is discussed in Part 3.)

Although \text isn’t very useful for in-line formulas, \text can be extremely
useful in superscripts and second order superscripts, because the roman letters
change size in the same way that italic letters of math formulas change size.
(The bold face letters also change size, but slanted letters don’t, because the
fonts don’t include slanted letters of the appropriate size.)

e Exercise 14.9:
How can the phrase “the n'* Fibonacci number F,,” be typeset?

92 Chapter 14. A Roman Orgy

¢ Exercise 14.10:
Typeset the following displayed formula:

Z (7;) —gn-1

[odd

e Exercise 14.11:

Although the notation f’, f” and f" is standard, many printers use f(v), f(v)
FOU . instead of f7, f7, f7" ..., because it gets too hard to count so
many 's. How would you typeset such formulas?

e Exercise 14.12:

See what happens if you have $2~\text {nd}$ in your file, instead of the correct
input $2°{\text {nd}}$.

We’ve been pretending that \text always puts things in roman type, but that’s

not quite correct. When you use \text in a display, or for an in-line formula,
the font it chooses is actually the “current font”. For example, if you are displaying
a formula in the statement of a theorem, and you are using the amsppt style, so that
\proclaim selects slanted type, then \text will set things in slanted type also. If you
switch to another style, which uses a different font for \proclaim, the font for \text
will change automatically. This is usually the sort of behavior that’s expected when
you use \text in a side condition. If roman letters are definitely desired, you can type
\text{\rm. ..} when \text appears in a construction that might change the font. On
the other hand, when you use \text in a superscript, the roman font is automatically
selected, since in this case you are probably using \text explicitly to get smaller roman
letters in math mode.

By now it might seem that \text allows you to get just about any sort of
roman type into formulas that you would ever need. But roman letters have an
important special use in mathematical formulas, one that works quite differently
than ordinary text. Although the operators “summation” and “integration” are
indicated by the symbols > and f , many common mathematical operators, like
“sine”, “cosine” and “logarithm” are simply indicated by abbreviations—“sin”,
“cos” and “log”. Roman type is usually used in such cases, but it would be a
nuisance to type \text{sin} every time you wanted “sin” to appear in a formula.
And it would be more than a mere nuisance to try to specify the proper spacing
in the formulas sin 2z and sin(2z) [there is a thin space after the ‘sin’ in the first
case, but not in the second]. So ApS-TEX has the control sequences \sin, \cos

Chapter 14. A Roman Orgy 93

and \log that do all this for you:

$\sin2\theta=2\sin\theta\cos\theta$ sin 20 = 2sin 6 cos 6
$\sin(2x)=2\sin x\cos x$ sin(2z) = 2sinx cos x
$x=e"{\,\log x}$ x = elog?

(The last formula shows a situation where a thin space can be helpful.)

The operators in the above examples are treated like [rather than) : any
subscripts and superscripts are placed to the side of the operator, even in dis-

plays:

$$\sin"2x+\cos"2x=1$$ sin?x +cos’z =1
$$\log_2x=(\log_2 e) (\log x)$$ log, x = (log, e)(log)

Notice that sin?, cos? and log, are automatically treated as new mathematical
operators, so that there is a thin space in the expression sin® x.

There are other common mathematical operators that are treated like), with
sub and superscripts appearing below and above in displays:

$$\max_{1<n<m}\log_2P$$ mex logy P

$$\1lim_{x\to O}\frac{\sin x}x=1$$ lin%) SIEZ =1

$$\frac{\max_{1<n<m}\log_2P_n} maxi<n<m 108y P
{A\lim_{x\to0}(\sin x/x)$$ lim,_o(sinz/x)

e Exercise 14.13:

Explain how to change the last of these examples to the following.

max log, P,
I<n<m g2 "

. sinz
lim

x—0 X

94 Chapter 14. A Roman Orgy

e Exercise 14.14:
Explain how to typeset the following formulas.

-2 2
sin“ ax a
1 lm —— = (—)
S 2—0 sin? bz b
1
1 sin — .
2 lim zsin — = lim L — lim S
1
T—00 X T—00 - x—0+ X
T
1 sin(n + L)z
(3) 7+cosx+6052:c+~~~+cosnx:(7l?)
2 2sin 3
(4) (logof) = f'/f
5 li 1 "=
(5) Jim z(logz)
1 1
. h . T
(6) hILI& [1 EEri hlir(r)l+ arctan - - 7r
1,1
= + =
(7) arctan% + arctan% = arctan (i — i’) = g
6

2—a,>2 2-—m?
8 l—m= 1l =
(8) M= il 1+a, 1+m

n even

e Exercise 14.15:
How could you typeset the following horrendous formula (which actually occurs
in the answer book for a calculus text)?

§ = min <sin2 <[min(1’95/10)]2> + min(1,£/10), [min(1,g/6)]2>

e Exercise 14.16:
Speaking of horrendous formulas, how would the formulas

km+m/2+6
sin x
de > ———
x km + /2
km+mw/2—6
and
oHgE
et dt (+10gz)2 2
, o . e\) e 1
lim = = lm ————— = —
T—00 ex z—00 2xe” 2

be typeset?

Chapter 14. A Roman Orgy 95

You can use \1imits and \nolimits after \max or \1im, with the same effect
they would have after \sum. (But \limits and \nolimits have no effect after
\sin, \cos and \log; these operators never have subscripts and superscripts set
as limits.)

e Exercise 14.17:
Redo Exercise 14.13, using \limits.

Here are some of the operators that AAMS-TEX knows about; those that can
have subscripts and superscripts set as “limits” are preceded by (L):

\arccos \cot \exp (L)\1im \sec
\arcsin \coth (L) \gcd \1ln \sin
\arctan \csc \hom \log \sinh
\arg \deg (L) \inf (L) \max (L) \sup
\cos (L) \det \ker (L) \min \tan
\cosh \dim \1lg (L) \Pr \tanh

All of these control sequences produce just what their names say. ApMS-TEX also
has \liminf, \limsup, \injlim and \projlim, which produce the operators
‘liminf’; ‘lim sup’, ‘injlim’ and ‘projlim’. Some mathematicians use the variant
forms

\varliminf lim
\varlimsup lim
\varinjlim lim
\varprojlim lim

This list may look impressive, but it’s hardly inclusive, because mathemati-
cians are continually inventing new operators of their own. If a manuscript seems
to have recurrent abbreviations in the formulas, like ‘trace’, ‘Tor’, ‘ISO’ or ‘Res’,
there’s a good chance that the author is using these as new operators. To get
TEX to typeset Tor in roman type and also treat it as a new operator, just type

\operatorname{Tor}

And use \operatornamewithlimits if you want an operator ‘Res’ which has
“limits”:
$$\operatornamewithlimits{Res} Res M
_{x=0F\frac{f (x)}x$$ =0
Of course, you don’t want to keep typing such monstrosities over and over again.
If “Tor’ or ‘Res’ occur several times in a paper, you'll want to define your own
control sequences \Tor and \Res, as explained in Part 3.

96 Chapter 14. A Roman Orgy

When an \operatorname has two parts, like ‘liminf’ and ‘lim sup’, it usually looks
better when there is only a thin space \, between the two parts.

e Exercise 14.18:
Some authors use ‘argsinh’ instead of sinh™'. How should you typeset this?

Although spaces have to be inserted specifically within \operatorname and

\operatornamewithlimits, any ¢ or ’> or * or - or / will be treated as in text,
with ‘¢ and ’’ giving “ and ” and -- and --- giving — and — . Periods, commas and
colons will be followed by a small amount of space.

Aside from the proper spacing produced by \sin, \cos, ..., and any new gadgets

that you produce with \operatorname, there’s another important way that these
operators differ from \text: they are normally set in roman type even if the current
font is something different.

e Exercise 14.19:
Sometimes operator names are set in different fonts. For example, many mathemati-
cians use SO(n) and SU(n) instead of SO(n) and SU(n), while others prefer SO(n)
and SU(n). How would you obtain these?

Chapter 15. Keeping Them In Line

We can now specify most of the combinations of math symbols that are needed
in formulas, and we can use double dollar signs $$ to get displayed formulas. But
mathematical works often contain various combinations of formulas in displays,
and this requires special treatment.

First of all, mathematicians frequently like to give their formulas a number, or
some other kind of tag. Some journals place these tags to the left of the formula:

(3-1) xT=y
while others put them on the right:
T=y (3-1)
To produce the above formulas with a tag, just type
$$x=y\tag3-1$$

AMS-TEX will automatically choose the appropriate placement for the tag, and
it will put the tag on a separate line if the formula is too long:
(3-1)

a very long formula ending here

Notice that it is not necessary to type ...\tag{3-1}$$ with braces around
the tag: AMS-TEX knows that the tag is everything between \tag and the $$.
Notice also that the parentheses around the tag are put in automatically; some
formats might have something different, like [3-1] or 3-1, etc. Finally, notice
that tags are processed as ordinary text, rather than as formulas in math mode,
so that - and -- give a hyphen and an en-dash, rather than one or two minus
signs.

e Exercise 15.1:
The mathematician I. Settit liked to have punctuation after Eir displayed for-
mulas, but when E tried to type the formula

(3-2) r =Y,
it came out as:
((3'2)a) r=y

What mistakes did E make?

97

98 Chapter 15. Keeping Them In Line

e Exercise 15.2:
What should you do if you need a tag like A’ ?

¢ Exercise 15.3:
And how about tags like (x), (s*) and (s#x)?

@ The amsppt style places tags on the left, but in Part 3 we explain how to get tags
on the right if you prefer.

Frequently, a display will contain several formulas in which certain symbols
are aligned. For example, consider the following displayed formulas:

1) max(f,g) = LI =9l
2) max(f, —g) = %M

Here the = signs are aligned, and the two formulas are centered as a unit. This
output was produced using ApS-TEX’s \align:

$$\align

\max(f,g) &=\frac{f+g+lf-gl}2, \tagl \\
\max(f,-g) &=\frac{f-g+|f+gl}2. \tag2
\endalign$$

Between \align and \endalign the individual formulas are separated by \\
(no \\ is needed after the final formula). Each formula also contains an &
that goes between the part of the formula that will be on the left hand side &
the part that will be on the right. The \tag on any formula is optional.

When you use \align...\endalign, TEX lines up the individual formulas,
and then sets each one as a line the whole width of the page (although such a
“line” might have a lot of white space in it). Consequently, TEX will issue an
error message if you try to type something like

3
A\align...\endalign B
$$

No printed symbols should be specified between the first $$ and the \align, or
between the \endalign and the final $$ sign.

In the above example we tried to type things nicely aligned, to make the file
easier to read, but of course that’s all unnecessary (and not very practical if the
formulas involve lots of symbols). But to help \align get the spacing just right,
you should remember to type the &’s right before the symbols that are being
lined up. Notice also the placement of the comma and period.

Chapter 15. Keeping Them In Line 99

e Exercise 15.4:
How should you typeset the following?

(1) @' =L vira - 1

k

1) @ ={Tevrr-nte

k

e Exercise 15.5:
See what happens when you leave out the & in the second formula.

¢ Exercise 15.6:
Typeset the following.

1
Qg = E
e
@ =\373V3
NN
a6 =N\ 3 73\2"32V3
etc.

Aligned formulas are usually thought of as a unit, so ApS-TEX normally doesn’t

allow a pagebreak between the formulas of an \align...\endalign construction.
However, as we’ll see in Part 3, there are numerous ways to tell ApS-TEX to allow
breaks in a display.

\align enables you to deal with aligned formulas that take up the whole width

of the page, but mathematicians sometimes like to squeeze several alignments
into a single display:

2
r=a"—f
R !
v= (%)
To handle displays of this sort, AAS-TEX gives you \aligned. ..\endaligned.
Unlike \align, which tells TEX to align a sequence of lines the width of the page,

100 Chapter 15. Keeping Them In Line

the construction \aligned...\endaligned creates a single aligned unit, which
is just wide enough for all the formulas involved, and which can be manipulated
like any other symbol. For example, the above display was typed as

$$

\left\{

\aligned \alpha&=f (z)\\ \beta&=f (z"2)\\
\gamma&=f (z~3) \endaligned

\right\}\qquad\left\{

\aligned x&=\alpha~2-\beta\\ y&=2\gamma\endaligned \right\}.
$$

e Exercise 15.7:
Typeset the following display.

ey f?
 EG—F?
_ e
ki,ko=H+\H K where 7Eg—2Ff—|—Ge
T 2(EG-F?)

When \aligned. ..\endaligned appears all by itself in a display, it looks just
like the result of \align...\endalign. But \tag’s work quite differently in the
two constructions. In an \align you can put a \tag after each formula, and you
can’t put a \tag after the \endalign. In an \aligned, the situation is exactly
the opposite: since it’s all one unit, you can’t \tag individual lines, but you can
put a \tag after the \endaligned. For example, the input

$$\aligned \alpha&=f(z)\\
\beta&=1f (z"2)\\
\gamma&=f (z~3) \endaligned\tag 22

3
gives
a= f(z)
(22) B = f(2%)
v =)

Notice that the tag is now centered on the whole \aligned unit.

Chapter 15. Keeping Them In Line 101

e Exercise 15.8:
How should the following numbered two-line display be typeset?

Kzgﬁjlz

(23 EG_F
Eg—2Ff+Ge
H:—
2(EG — F?)

e Exercise 15.9:
See what happens when you have a file containing

$$\aligned A&=B \\ C&=D$$

with the \endaligned missing, as the only line of text.

Every once in a while an author wants to gather together several formulas and
display them all centered, instead of aligned:

a=b+c
d=ce
f+g=nh
If you typed this as three separate displayed formulas,
$$a=b+c$$ $3d=e$$ $$f+g=h$$

there would be too much space between them. So instead use \gather:

3
\gather a=b+c\\ d=e\\
f+g=h\endgather
3
As usual, \\ indicates line breaks, but within \gather the formulas must not

have &’s in them, since nothing is being aligned. As with \align, you can use
\tag on any formula.

¢ Exercise 15.10:
Typeset the following:

(3-2) g = det(gi;)
(3-3) g™ = (k,1) entry of the inverse matrix of (g;;)

AMS-TEX also gives you \gathered. . .\endgathered, which bears the same
relation to \gather as \aligned bears to \align. In other words, the construc-
tion \gathered...\endgathered produces a unit that can be treated as a new
symbol—it can be used within other formulas, and can be given a \tag, which
is centered with respect to the whole unit.

102 Chapter 15. Keeping Them In Line

e Exercise 15.11:
Typeset the following:

We have (a + bi)? = a + Gi if and only if

a’> - b =«

()

2ab = 3,
which can be solved to give
a:\/2a+2\/a2+ﬂ2 a:f\/2a+2«/a2+52
p or —B

b= b= .
2\/2a+ 2v/a? + 2 2\/2a+ 2v/a? + 32

Chapter 16. Too Much Of A Good Thing

Sometimes a displayed formula can’t be printed on a single line because it just
won’t fit, no matter how much TEX tries to squeeze things:

(a+b)"+ = (a+b)(a+b)" = (a+b) i (?) a1 = zn: C‘) a”“jbj—kjil (j " 1) a"ip

=0 §=0

This formula is really a lot of smaller formulas concatenated, and in such cases
it is customary to break the long formula by lining up some of the relational
symbols. In this way, we can fit even longer formulas into a single display:

(@ +b)"* = (a+b)(a+b)" = (a+b) zn: <"> an Ly

i=o M

N\ i1 n < n) i
. a b+ E) a Iy
0(3) — U1

Jj=1

Il

J

1 o
<n+ >an+1jb].
=0~/
e Exercise 16.1:

How do you think you could typeset this display?

3

Exercise 16.1 shows how a little ingenuity can go a long way, but matters
become more complicated when a split formula of this sort needs to be given a
tag. If tags are placed on the left, it is customary for the formula to be typeset
as

(1-2) (a+b0)" = (a+Db)(a+b)" = (a+b)zn: (@)a”lbj

=0

N\ i1 n < n > jrj
. a b]—|—g) a Iy
<J> —\Jj—1

j=1
<TL Jr 1> anJrlfjbj
0 J

103

I

7=0

3 |l

j=

104 Chapter 16. Too Much Of A Good Thing

but when tags are placed on the right it would be typeset as

(a+b)" = (a+b)(a+b)" = (a+b) zn: (;‘) an Ly

7=0

R () (e

j=1
= (" ;r 1) an =iy (1-2)
j=0

So AAMS-TEX gives you \split, which enables you to typeset the tags on a split
formula without worrying about the conventions that the format will use: If you

type

$$
\split
(a+b) "{n+1}
&=(a+b) (a+b) "n=(atb)
\sum_{j=0}"n\binom nj a“{n-1}b~j\\
&=\sum_{j=0}"n\binom nja~{n+1-j}b~j+
\sum_{j=1}"n\binom n{j-1} a"{n-j}b~j\\
&=\sum_{j=0}"n\binom{n+1}j
a"{n+1-j}b~j\endsplit\tagl--2
$$

then ApS-TEX will automatically produce whatever output is appropriate for
your format.

Note that the \tag comes after the entire construction \split...\endsplit;
if you try to put the \tag on a particular line, you’ll get an inscrutable error
message, because A\S-TEX treats the \split...\endsplit construction as a
single unit. Notice also that our line breaks are made before binary relations,
whereas formulas in text are usually broken after binary relations.

e Exercise 16.2:
Suppose that you want to have TEX typeset
(1) (a4 b)(a+b) = a® + 2ab + b,
(2) (a+0b)(a—b)=(a+b)a— (a+b)b
=a®+ab—ab—b?

=a? — b2

... Is Wonderful 105

when tags are set on the left, but
(a+b)(a+ b) = a® + 2ab + b, (1)
(a+0b)(a—b)=(a+b)a— (a+Db)b
=a® 4 ab — ab — b?
=a* -7 (2)
when tags are set on the right. What input do you think you should use?

Sometimes a formula has to be split in ways that don’t seem to involve any
alignment:

(fog)"(x)=[f"(9(x)) g (x)* +2f"(g9(x)) ¢'(x)g" (x)]
+ [f"(g(x) - ¢ (2)g" (x) + f'(9(x)) - ¢ ()]

In such cases it is customary to leave at least two quads of space before the
second part of the formula. The above formula was typed as

$$\split
(f\circ g)’’’ (x)&=\bigl[f’’’ (g(x))\cdot g’ (x)"3+
2177 (g(x))\cdot g’ (x)g’’ (x)\bigrl\\
&\qquad+\bigl [f’’ (g(x))\cdot g’ (x)g’’ (x)
+£2 (g(x))\cdot g’’’ (x)\bigr]
\endsplit
3

so that the =\bigl[is aligned with the invisible \qquad. Notice, again, that
such a split is normally made before binary operators, although formulas in text
are usually broken after binary operators.

¢ Exercise 16.3:
How do you think the following was typeset?

A=la+b+c]"(a11 + b1 +ecn
+ a1z + bia + c12 + age + baa + c22).

Elaborate sets of rules for breaking and setting displayed formulas can be com-
piled, but they vary from printer to printer, and in any case they are never really
adequate. TEX doesn’t even attempt to break long displayed formulas, because
this is an art—the author of a mathematical manuscript should really determine
all breaks, since they depend on subtle factors of mathematical exposition. (Of
course, it’s often difficult for the author to foresee the need for breaks, so the
judgment of the experienced TEXnical typist can also be invaluable.)

106 Chapter 16. Too Much Of A Good Thing

The following display illustrates one other printing convention that you should
know about:

b b
/ { [1P + 50P(a)? - 2690 S)ato) da:} dy

= /ab{g(y)z /ab 2+ fy)? /abg2 —2f(y)g(y) /ab fg} dy

Here the first line was placed almost flush left and the second line was placed
almost flush right. This was typed using AAS-TEX’s \multline:

3
\multline
\int_a"b\biggl\{\int_a"b[f(x) "2g(y) "2+f (y) "2g(x) "2
-2f (x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\
=\int_a"b\biggl\{g(y) "2\int_a"bf " 2+f (y) "2

\int_a"b g~"2-2f(y)g(y)\int_a"b fg\biggr\}\,dy
\endmultline

$$

The precise distance from the margin is determined by the format. In the amsppt
style it is one quad of space; some formats may leave no space at all.

You can put a \tag after \multline...\endmultline, just as you can after
\split...\endsplit. For example,

3
\multline
\int_a"b\biggl\{\int_a"b[f(x) "2g(y) "2+f (y) "2g(x) "2
2f (x)g(xX)f (Y g(y)\,dx\biggr\}\,dy \\
=\int_a"b\biggl\{g(y) "2\int_a"bf " 2+f (y) "2

\int_a"b g~2-2f(y)g(y)\int_a"b fg\biggr\}\,dy
\endmultline\tag 17

$$

gives either

b b
an [{ / [f<x>2g<y>2+f<y>2g<x>22f<x>g<x>f<y>g<y>dx}dy

= /ab{g(y)z /ab 2+ f(y)? /abg2 —2f(y)g(y) /ab fg} dy

... Is Wonderful 107

or

b b
/ { [1P + 5) - 262)g() S)aty) dx} dy

:/ab{g(y)2/abf2+f(y)2/ab92—2f(y)g(y)/abfg} dy (17)

As in the case of \split, you mustn’t try to put the \tag on any particular line,
it must go after the entire \multline...\endmultline construction. Moreover,
\multline creates lines the width of the whole page, just like \align, so you
can’t put it inside any other construction: nothing should come between the first
$$ and the \multline or between the \endmultline and the second $$.

¢ Exercise 16.4:
Typeset the display

P ! T = z? T

for some numbers aq, ..., asg, b1, ..., b3k.

As the name suggests, \multline can be used to create displays with several lines.
All lines except the first and last are centered, although there is also a provision
for shoving any of these to the left or right. Details of this sort will be found in Part 3.

Of course, mathematicians actually like to create even more perverse displays
than any of the ones we’ve dealt with so far. But that, fortunately, can be left
to the next, and final, chapter of this Part.

Chapter 17. Sophisticated Positions

Mathematicians like to have a computer typesetting system that makes it
easy for them to produce all sorts of displays, but what really turns them on is
the possiblity of typesetting “matrices”. These are the rectangular arrays that
appear in formulas like

T — A 1 0
A= 0 T — A 1
0 0 T — A

A matrix can be produced painlessly using AAS-TEX’s \matrix. . .\endmatrix
construction: to get the above formula you simply type

$$

A=\1left(\matrix
x-\lambda & 1 & O\\
0 & x-\lambda & 1\\
0 & 0 & x-\lambda
\endmatrix \right).

3
Notice that \matrix is a bit like \aligned—in each row you put & between the
15t & 27 & 31 & ... elements, and you use \\ to separate the various rows.

But there are also important differences: in a \matrix the elements within
each column are centered, and there is a \quad of space between the columns.
In addition, the entries of a \matrix are normally set in t-size and the space
between the lines is the same as the space between lines of text, while the entries
of an \align or \aligned are normally set in d-size and the lines are spread
apart a little more.

Mathematicians seldom use matrices without enclosing them in parentheses
or some other delimiters, and ApS-TEX has several other control sequences to
provide these delimiters for you. The above display could also have been typed
as

3

A=\pmatrix
x-\lambda & 1 & O\\
0 & x-\lambda & 1\\
0 & 0 & x-\lambda
\endpmatrix.

$$

108

Chapter 17. Sophisticated Positions 109

And there’s \bmatrix...\endbmatrix to get brackets \left[...\right]
around the matrix, \vmatrix...\endvmatrix to get vertical lines \left]...
\right|, and \Vmatrix...\endVmatrix to get the double vertical lines you
would get with \1eft\|...\right\|. Caution: If you start with \pmatrix, but
end with \endmatrix, then you have essentially specified a formula with \left (
at the beginning, but no matching \right(delimiter) at the end, so you will get
an error message.

¢ Exercise 17.1:
Typeset the following:

(1.3) a b\ (0 1) (a-0+b-1 a-14+0-0
: c d 1 0/ \a-0+d-1 ¢c-1+d-0
(b a
—\d ¢
e Exercise 17.2:

Typeset the following matrix of matrices,

(o) (3)
(o))

where there are two quads of space between the columns, and two blank rows
between the printed rows.

e Exercise 17.3:
How can you typeset the following matrix? Hint: ApS-TEX has \hdots for
horizontal dots, \vdots for vertical dots, and \ddots for diagonal dots.

a1 ai2 e A1n
a1 as2 e aon
am1 Am2 ... Qmn

In some situations it may not be desirable to center the entries of a \matrix
within each column. For example, in the parenthesized matrix

cos 6 sin 6
—sin@ cos 6

110 Chapter 17. Sophisticated Positions

some printers might prefer to have the columns set flush right, and in the matrix

x 1 1
z+y 11 11
r+y+z 111 111

the decimals in the second column are set flush left, while the numbers in the
third column are set flush right. AazS-TEX has a special \format...\\ con-
struction to specify a matrix with some new format. The above matrix was
typed as

$$\matrix \format\c&\quad\l&\quad\r\\
x&. 1&1\\

\endmatrix$$
The \format “row” \format\c&\quad\l&\quad\r\\ specifies the new format;
\c indicates a column in which the elements are centered, while \quad\1 indicates
a column in which the elements are set flush left, with the whole column preceded
by a \quad of space, and \quad\r indicates a column with elements set flush

right, again preceded by a \quad of space. You can also use \format with
\pmatrix, etc.

e Exercise 17.4:
Typeset the following formula:

cosf sinf cos¢ sing\ cosp sinp 0+
—sinf cosf —sing cos¢) \ —sinp cosp)’ p= '
e Exercise 17.5:
Typeset the following column of numbers:

3.14159
2.71828
1.61808

57701

e Exercise 17.6:
Typeset the following, where the columns are flush left.

Co C1 C2 R
(G) C3 coo Cpy41

det Co C3 Cq coo Cpy2 > 0.

Cn Cnt+1 Cnpt2 ... Con

Chapter 17. Sophisticated Positions 111

e Exercise 17.7:
Typeset the following:

0 w12 0 . 0
—Ww12 0 w23 0 0
0 —Wa3 0 W34 0 N 0
w =
0 e 0 Wn—1,n
0 cee 0 —Wn—1,n 0

AMS-TEX doesn’t have a special control sequence to produce a matrix with
braces { } around it, because this is almost never needed. But mathematicians
very often define things by cases, using a construction like

rz+1, forx>0
r—1, forax<O0.

o) = {
You could get this with an appropriate \format and a \left\{ and \right.
but ApS-TEX has the special construction \cases. . .\endcases to do it all for
you. Just type

$$

f(x)=\cases x+1,&\text{for $x>0$}\\
x-1,&\text{for $x\1e0$}.\endcases

$$

taking care to get the punctuation right, and remembering to use \text when
necessary. Notice, by the way, that the first element should not be typed as
$x+1$: A\S-TEX is already processing the elements of a \matrix or \cases in
math mode, and a naked $ sign will lead to complete havoc.

¢ Exercise 17.8:
Typeset the following;:

1
f®)(x) = az™ * sin =
x

1
2k—1 1 1 ™ % gin =, k even
+ E (agxm_l sin = + bz™ ! cos —) + z
x x

1
I=k+1 ™ 2% cos =, k odd.
X

quces &
Plc les

for special occasions

Chapter 18. Practicing Self Control

AMS-TEX comes equipped with dozens of control sequences to handle almost
any conceivable mathematical formula. But you can also create new control
sequences of your own, which can serve as abbreviations for complicated expres-
sions that occur frequently within a paper. For example, if the formula a2 + 32
occurs over and over again, you might find yourself wishing that you could type
some short-hand expression like \ab to stand for it. To do this you simply have
to insert

\define\ab{\alpha~2+\beta~2}

into your input file. Thenceforth, TEX will substitute \alpha~2+\beta~2 when-
ever it sees \ab, so \ab will give the formula a2 + 32, and $$\ab.$$ will give
the displayed formula

a? + B2

e Exercise 18.1:
Assuming that \ab has been \define’d in this way, how would you typeset the
formula
2 +ﬁ2

CrPR+ VPR <ar 2
5
with the least amount of typing?

e Exercise 18.2:
And (this is trickier) how about the formulas 20°+5* and Dpoyp2?

e Exercise 18.3:
What happens if you have

\define\ab{ \alpha~ 2 +\beta” 2 }

in your file?

The only thing you can \define is a control sequence, so you will get an error
message if you mistakenly type

\define ab{\alpha~2+\beta"2}

115

116 Chapter 18. Practicing Self Control

In fact, AMS-TEX is quite picky about \define, and you will get an error
message even if you type

\define{\ab}{\alpha~2+\beta~2}

—braces aren’t allowed around that first control sequence! If you get an error
message for one of these reasons and try to coax ApS-TEX into continuing
by hitting (carriage-return), TEX will do its best to ignore the \define and
press onward. But then when you use \ab later, TEX will complain that this
is an undefined control sequence—an incorrectly executed \define is usually
catastrophic, so you should probably exit immediately and fix things up.

There’s nothing special about the name \ab, of course, and many typists will
think of some entirely different abbreviation. You might simply use \1 if this is
the first abbreviation you make, and you think that \1 will be easy enough to
remember. But if you choose this control symbol there is one other precaution
to be observed: Be sure to type

\define\1{\alpha~2+\beta"2}

without any extra space between the \1 and the {; an extra space would really
louse things up, in ways that we’ll discuss later.

Even in ordinary text you might find it useful to \define special control se-
quences. For example, if the names “de Rham” and “E. Cartan” occur frequently
in a paper, you might

\define\deRham{de~Rham}
\define\Cartan{\’E. Cartan}

to save yourself a lot of typing and thinking.

e Exercise 18.4:
How would you use these control sequences to typeset the following?

The de Rham cohomology ring H*(G) had, of course, already es-

,

sentially been computed by E. Cartan.

e Exercise 18.5:
You intend to tell people that there are lots of things that they must do, so
you'd like to have a control sequence \must that will automatically produce the
boldface ‘must’. How should you \define it? (Like Exercise 18.2, this is also a
little tricky.)

Chapter 18. Practicing Self Control 117

Substituting a new control sequence for a complicated combination isn’t the
only use for \define; you can also use it to substitute a new control sequence
for a standard control sequence that you don’t like the name of. For example,
you can type

\define\a{\alpha}

so that the short name \a can now be used for \alpha. By the way, this definition
illustrates another way that ApMS-TEX is picky about \define. Even though
we are \define’ing \a to stand for the single control sequence \alpha, we must
have braces around the \alpha; the braces are essential in order for \define
to figure out just what the definition is, and if you typed \define\a\alpha it
would cause havoc.

e Exercise 18.6:
Assuming that you have the correct definition \define\a{\alpha} in your file,
how can you type the following formula?

a®+a®T* +a® +vVa2+ad

e Exercise 18.7:
And what would happen if you put

\define\ab{\a"2+\beta~2}

into your file?

e Exercise 18.8:
You might be tempted to

\define\a{α}

so that you could simply type \a in text and get o in text. Why would this be
a real bad idea?

Although it was easy to tell TEX to use \a to mean \alpha, we’re in for a
surprise if we try to

\define\b{\beta}
When ANS-TEX gets to this \define it will issue an error message,!
! AmS-TeX error: \b is already defined.

1This error message comes with a little pronouncement, to inform you that it is produced
by AMS-TEX, rather than by TEX itself, but you can treat it just like any other error message.

118 Chapter 18. Practicing Self Control

Ah, yes, \b is indeed already defined: it’s the control sequence that we use to
get the ‘bar-under’ accent. (Perhaps you never read about \b because it’s in
Chapter 6, which you skipped, you snob. Never mind, you can also find \b in
the index.)

If you type h or H after you get this error message, you'll find that AaS-
TEX has ignored your \define, to prevent any conflict. That’s sort of a shame,
because §’s occur frequently, while you may never come upon a single bar-under
accent. So AMS-TEX also gives you \redefine. If you put

\redefine\b{\beta}

in your file, then all subsequent occurrences of \b will be replaced by \beta,
even though \b originally had a different meaning. If you also want to be able
to deal with an occasional bar-under accent, there’s a way to arrange that too:
if you put

\predefine\barunder{\b}
\redefine\b{\beta}

in your file, then \barunder will become a new name for the control sequence
that produces a bar-under accent, and \b will become a new name for \beta.
So you can type \b to get G, and you can type

\barunder T\"abit ibn Qorra

to get the name ‘Tabit ibn Qorra’. It’s essential for the \predefine to occur
somewhere before the \redefine (that’s why it’s called \predefine, right?),
but it needn’t precede it immediately. Notice also that \predefine is a lot more
special than \define and \redefine—within the curly braces you should have
nothing but a single control sequence.

e Exercise 18.9:
You probably also want to have an abbreviation for \gamma, the third letter of the
Greek alphabet. Technical typists often choose \g, but if you relish a reputation
as an unregenerate logical type, like a mathematician, then you ought to opt for
\c. How do you get ApS-TEX to accept \c as an abbreviation for \gamma, so
that you can keep up this facade?

You might be tempted to use \redefine instead of \define at the very outset,
instead of waiting to find out whether ApS-TEX accepts your \define, but this
would be a very bad idea, because \define allows AN S-TEX to save you from
errors that you might not be aware of. For example, suppose that we have some

Chapter 18. Practicing Self Control 119

large complicated mathematical expression and we decide to call it simply \box,
so that we put

\define\box{...}

into our input file. When ApS-TEX gets to this line, it will again issue an error
message

! AmS-TeX error: \box is already defined.

You probably don’t remember \box, because it hasn’t ever been mentioned be-
fore, so let’s look in the index. Guess what? It’s not there either! That’s because
\box isn’t a control sequence that you are ever supposed to use—it’s a control
sequence that TEX uses internally, in all sorts of important ways. If you were to
\redefine the control sequence \box, then total chaos would ensue. So always
use \define first, and if you happen to stumble upon a control sequence that
doesn’t appear in the index, then don’t \redefine it under any circumstances.
(A few of the control sequences that appear in the index are also used internally,
but they all bear the annotation ‘{do not \redefine]’ as a warning.)

Actually, \box is a rather exceptional case: most of the control sequences that
you mustn’t \redefine have strange names that you'd never think of anyway.
Of course, there aren’t as many control symbols, and quite a few are already
defined, like \, and \’ and \&; but there are still some left for the picking,
including \0, \1, ..., \9.

(Despite the warnings just issued, there is one situation where it is safe, and
even advisable, to use \redefine on the first try—mnamely, when you’re trying to
redefine a control sequence that you yourself originally produced with \define.
If you typed

\define\ab{\alpha~2+\beta~2}
because there seemed to be a lot of a2+ 3% combinations in a paper, but suddenly

they’ve disappeared, and o+ 32 is popping up frequently, then you might decide
to

\redefine\ab{\alpha~3+\beta~3}

A \redefine is necessary, since \ab has already been \define’d.)

Although ApS-TEX’s \define tries to save you from errors, there are still a
few precautions that you must attend to yourself. It’s quite all right to \define

120 Chapter 18. Practicing Self Control

control sequences in terms of other control sequences, but don’t \define a
control sequence in terms of itself! If your input file contains

\define\regress{infinite \regress}

then something horrible will happen the first time you use \regress: TgX will
first replace \regress by infinite \regress, then it will replace \regress
again, obtaining infinite infinite \regress, then it will replace \regress
again, Soon TEX will run out of room to store all this stuff, and you’ll get
a dreaded error message

! TeX capacity exceeded, sorry.
Something even worse occurs when you
\define\selfreference{\selfreference}

If you now use \selfreference in your file, TEX will look up the way it was \define’d,
and then replace it with its definition, namely \selfreference. Then it will replace
this \selfreference with \selfreference, and then replace this \selfreference with
\selfreference, ... ! In this case, TEX never runs out of room to store things, so it
just keeps recycling—after several billion cycles, you’ll probably start to wonder why
nothing is happening on the screen. At this point, TEX can be stopped only by using
the operating system’s interrupt.

¢ Exercise 18.10:
What happens if you

\define\vicious{\circle}
\define\circle{\vicious}

and use \vicious in your file?

We also ought be more specific about where our \define’s go. First of all,
you must \define a new control sequence before using it. So one possibility is
to collect all the \define’s at the beginning of the paper, say right after the
\document line. That way, you’ll know just where to look in order to recall
what’s been \define’d. But sometimes you realize that you want to \define
something as you're typing, and instead of jumping back to the beginning, you
might prefer to insert the \define when the time is ripe. In such cases you
might \define things right before the paragraph in which they are needed. You
can even \define something smack in the middle of a paragraph, but if you do
this, you need to be quite careful about spaces. If you typed something like

If we have \define\ab{\alpha~2+\beta"2} the
condition $\ab+1>0$,
then $\frac\ab\gamma>0$.

Chapter 18. Practicing Self Control 121

you would get
If we have the condition a® + 82 +1 > 0, then @ > 0.

with two spaces after ‘have’, one from the space after ‘have’ and one from the
space after ‘\define\ab{...} . So one of those spaces would have to be elimi-
nated, probably making the output look a little cramped. Even if you typed

If we have \define\ab{\alpha~2+\beta"2}
the condition $\ab+1>0$, then $\frac\ab\gamma>0$.

you would get two spaces, since the {carriage-return) at the end of the first line
counts as a space. I like to keep all my \define’s on separate lines, with a % at
the end of the line, to obliterate the (carriage-return):

If we have
\define\ab{\alpha~2+\beta~2}J,
the condition $\ab+1>0$, then $\frac\ab\gamma>0$.

Aside from keeping the spacing correct, you should also be aware that a
\define inside a group gets forgotten when that group ends. If you type

{\bf If we have
\define\ab{\alpha~2+\beta~2}J,
the condition $\ab+1>0$, then $\frac\ab\gamma>0$.3}

then \ab will be undefined after the closing }. Of course, you're unlikely to put
a \define within a group like that, but you might try putting a \define inside
a math formula, especially since this eliminates worries about extra spaces. But
it’s important to know that \define inside a math formula also gets forgot-
ten once the formula ends. In practice, this feature of \define is usually very
convenient—it means that you can \define a control sequence for temporary use
within a formula, and you can \define it to be something completely different
inside a later formula.

We’ve covered several precautions that need to be observed for \define’s,
but there’s also the more practical question of when a new \define is really
expedient—you wouldn’t want to use this new-found power to overwhelm your-
self with a plethora of useless gadgets.

First of all, there are probably going to be a lot of special \define’s and

122 Chapter 18. Practicing Self Control

\redefine’s that you’ll want to use all the time, like

\define\a{\alpha}
\predefine\barunder{\b}
\redefine\b{\beta}
\predefine\cedilla{\c}
\redefine\c{\gamma}
\predefine\dotunder{\d}
\redefine\d{\delta}
\define\e{\epsilon}

and any other shorthand names for Greek letters, or other common math sym-
bols, that you use frequently. You can keep these permanently in a special file,
say defs.tex, and use your text editor to dump the contents of the file into any
other file that you happen to be working on. My own file of standard \define’s
contains

\define\ ({\1left (}

\define\){\right)}

\define\[{\left [}

\define\l{\right]}

so that I can type things like

1+v5)"
2
simply as

$$\ (\frac {1+\sqrt5}2 \)"n $$

In addition to constantly used \define’s, there are frequently a few special
\define’s that can save a lot of typing in a particular file. You shouldn’t be
overly zealous in making new \define’s for each paper—after all, it takes time
to type the proper \define for a symbol, and if you have too many new control
sequences to worry about you can be slowed down just trying to remember which
one to use. But it makes sense to look through a paper before you start typing,
to see if there are any formulas that occur dozens of times, or any particularly
complicated formulas that occur at least 5 or 6 times, say. In particular, if the
author introduces new operators like Tor and Res (compare page 95), then you
will probably want to

\define\Tor{\operatorname{Tor}}
\define\Res{\operatornamewithlimits{Res}}

Finally, every once in a while it might pay to make a few definitions on the
fly, to take care of some one-time monstrosity.

Chapter 18. Practicing Self Control 123

e Exercise 18.11:
The author once had to typeset the display

Qp = Gp—1+ an—2
1 n \/g n—2 1_ \/g n—2 1 n \/g n—1 1_ \/5 n—1

2 a 2 * 2 a 2
- V5h

(5 e) e

7
n—2 n—2 2
1+6 1 + VA% 1-6
2 2
AN
2 2
7 .
a virtual mine field of potential typing errors, especially because of all those

\frac’s within \frac’s. What possibilities for avoiding errors could be used
(the control sequences \ (and \) were already available)?

If you’re an experienced mathematical typist you've probably already begun
to ask yourself how to get new control sequences with arguments, since a paper
will often have many formulas with exactly the same form, except that different
sub-formulas occur in various places. For example, if you're typing a calculus
book, then you may encounter zillions of “derivatives” like

dy dz dw

dx’ dx’ dx
Although you could \define several new control sequences like \derivy and
\derivz and \derivw, it would be a lot nicer to have a single control sequence
\deriv so that $$\deriv y$$ produces Z—y and $$\deriv z$$ produces Z—;, etc.

x
To produce such a control sequence \deriv with one argument, you type
\define\deriv#i{\dfrac{d#1}{dx}}

Here #1 stands for the argument, so \deriv f gets replaced by \dfrac{df}{dx},
etc.

124 Chapter 18. Practicing Self Control

¢ Exercise 18.12:
How would you type the formulas

dz?
dx

and
d(z? + 23)
dx

using \deriv?

e Exercise 18.13:
Suppose a manuscript talks about many ‘vectors’ like (z1,...,2,), (Y1,...,Yn),
etc. How can you conveniently abbreviate all of these formulas?

e Exercise 18.14:
And how would you then get (aq,...,ay,) and (2f,...,2)?

e Exercise 18.15:
Finally, how about the formulas (z'y,...,2',) and (21/,...,2,')?

e Exercise 18.16:
Define a control sequence with one argument \power, such that $\power x$
produces 2% and $\power\alpha$ produces 2, etc.

e Exercise 18.17:
How might you use a control sequence with an argument to avoid typing most
of the \frac’s in the display in Exercise 18.117

If we progress from calculus to advanced calculus, we’ll encounter “partial
derivatives” like
of of Jdg oh
oz’ oy’ oz’ 0z
which are certainly no fun to type. Now we’d like to have a control sequence \pd
with two arguments, so we could type these formulas as $$\pd £x$$, $$\pd £y$$,
$$\pd gx$$, $$\pd hz$$, etc. As you might expect, we can do this with

\define\pd#1#2{\dfrac{\partial#1}{\partial#2}3}
(Notice that we don’t need a space before the # in \partial#1 and \partial#2,

even though we may be substituting letters for #1 and #2; once TgpX has read
the \define, it regards the \partial and the #1 as permanently separated.)

Chapter 18. Practicing Self Control 125

e Exercise 18.18:
of g

Some authors use x1, x2, ... instead of x, y, ... in expressions like 9 B’
X1 Z2

etc. How would you get these formulas with \pd as \define’d above? How could
you modify the definition to make the typing easier?

¢ Exercise 18.19:
Suppose that a manuscript has lots of formulas of the form \/E + \/5, \/E—i— \/;,
\/E+ \/E, etc., and you want to have a control sequence \sqrts so that you can
type these as $\sqrts ab$, $\sqrts az$, $\sqrts cd$, etc. Explain what is
wrong with the following definition.

\define\sqrts#1#2{\sqrt#1+\sqrt#2}

e Exercise 18.20:
It’s probably not good enough to have a control sequence with one argument
to produce vectors like (z1,...,2n), (Y1,.-.,Yn), etc. You'll probably have to
deal with things like (21,...,2Zm), (Y1,...,Yn+1) as well. Explain how to define
\vector so that we can type these as $\vector xm$ and $\vector y{n+11}$.

e Exercise 18.21:
You’ve typed a 50-page manuscript in which the author has used formulas like
R%, a couple of hundred times. Now E decides that the notation R’ jkl would
really be better; with some trepidation E asks if you could make all the changes,
perhaps by using that nifty little text editor of yours. You can’t, but you still
smile at Em graciously. Why?

e Exercise 18.22:
You're typing manuscripts for several authors at the same time. Some of them
want notation like 22, y?, ..., while others prefer x;2, ng, How could you
use a control sequence to keep things straight?

Since some precautions were required to \define a control sequence, you
shouldn’t be too surprised to learn that there are a couple of other precautions
that are required for control sequences with arguments.

First of all, if you \define\cs where \cs is a control sequence with arguments,
then after \define\cs the ‘arguments’ #1, #2, ... must appear in that order,
and you can only go up to #9. TEX will issue an error message if they appear in
the wrong order.

e Exercise 18.23:
In Exercise 18.20 we defined \vector so that $\vector xn$ produces (z1,...,2z,)]
etc. But perhaps you don’t like this, perhaps you’d prefer to type $\vector nx$,
with the ‘n’ first, and the ‘x’ second. How can you arrange this?

126 Chapter 18. Practicing Self Control

When you \define a control sequence with an argument there is a second
precaution that is very important, though a little surprising. If we’ve made the
definition

\define\pd#1#2{\dfrac{\partial #1}{\partial#2}}

0
then we can get 8—f by typing $\pd £x$, and we can also type $\pd f x$ since
x

TEX always ignores spaces while looking for the arguments of a control sequence.
But you must not leave spaces after #1 and #2 when \define’ing \pd! If you
were to type

\define\pd#1 #2 {\dfrac{\partial #1}{\partial#2}}

then TEX would think that you were demanding that there be a space after the
first and second arguments. So if you typed

\pd fx =3 +x

TEX would not regard £ and x as the first and second arguments. Instead it
would assume that fx is the first argument, since fx is the shortest thing with
a space after it. Similarly, TEX would assume that =3 is the second argument.
The results would be strange indeed!

So if you want to avoid anomalies when you \define control sequences with
arguments, just be sure not to have any extraneous spaces after the #1, #2,
#3, ..., and you shouldn’t have any problems. If you find this rather mysterious,
and insist on learning more about the subtleties involved, you will find them
explained in the sidetrip that ends this chapter.

Since TEX ignores spaces when looking for the arguments of a control sequence,
the prohibition against leaving spaces in the definition of a control sequence with
arguments might seem like a bad inconsistency. But this is actually a special case of a
general feature of TEX, one that allows you to \define control sequences that behave
in rather special ways.
For example, let’s consider the definition

\define\pd#1#2{\dfrac{\partial#1}{\partial#2}}

9z® Of(z,y)

once again, and suppose that we are going to need symbols like —, ——% etc.
)) oz Oy
Then we will need braces:

$$\pd {x"2}x$$
$$\pd {f(x,y)}y$$

Chapter 18. Practicing Self Control 127

We might find it more convenient to type something like

$$ \pd x"2.x $$
$$ \pd f(x,y).y $%

with a period separating the arguments. We can arrange for this by typing
\define\pd#1.#2{\dfrac{\partial #1}{\partial#2}}

This \define tells TEX that a . must follow argument #1. (When you leave a space
after an argument, TEX reasons similarly that this argument must be followed by a
space.)

e Exercise 18.24:
How would you \define the control sequence \vector so that you type $\vector x,n.$
to get (z1,...,%n), and $\vector y,m+1.$ to get (y1,...,Ym+1), €tc.

e Exercise 18.25:
Suppose you make the definition

\define\powers#1,#2.{2"{#1}+3"{#2}}

How would you type 2% + 3% and 21903 4 31934 and, finally, 21,034 4 310039

Here’s another example where you can make good use of this special feature of the
\define process. Previously, we considered the definitions

\define\deRham{de~Rham}
\define\Cartan{\’E. Cartan}

and we noted that you have to be careful to type \, when you need a space after the
names. Well, here’s a way of avoiding that distraction. Suppose that instead we adopt
the definitions

\define\deRham/{de~Rham}
\define\Cartan/{\’E. Cartan}

Now TEX expects \deRham and \Cartan to be followed by /, so you always have to
type \deRham/ and \Cartan/. But these \.../ combinations don’t take much more
typing—and look rather nice anyway—and now you don’t have to worry about TEX
gobbling up extra spaces: if you leave a space after the / then TEX will leave a space
there also.

e Exercise 18.26:
Redo Exercise 18.4, assuming that \deRham and \Cartan have been \define’d in this
new way.

128 Chapter 18. Practicing Self Control

e Exercise 18.27:
Here’s a somewhat trickier question. Suppose you decide that \AmSTeX isn’t a good
name for the ApS-TEX logo, you think it should be called \AmS-TeX instead. So you

\define\AmS-TeX{\AmSTeX}

What happens?

e Exercise 18.28:
What happens when you make the following definitions?

\define \ab {\alpha~2+\beta 2}
\define \1 {\alpha~2+\beta~2}

e Exercise 18.29:
What happens if you leave out the braces in \define\a{\alpha}, so that you have

\define\a\alpha

in your file?

Chapter 19. gX-rated Features

In the previous chapters we’ve learned how to deal with almost all standard
mathematical fare. This chapter covers everything else—the few topics that we
didn’t get to before, and all those little tricks that you will sometimes need to
produce special effects or improve the appearance of a formula. This information
has been sorted into various entries that are listed alphabetically. Assisted by
the index, you should be able to find out about any special TEXniques you might
need. But it’s probably a good idea to browse through this chapter now, to get
an idea of what sort of things it contains, and then learn it all gradually. It may
take quite some time to assimilate all this information, but this extra attention
to detail will enable you to typeset formulas that even a master printer would
be proud of.

ACCENTS IN MATH MODE

The usual accents for text, like \’, \~, etc., are not allowed in math mode, which
has the following accents instead:

$\hat a$ a
$\check a$ a
$\tilde a$ a
$\acute a$ a
$\grave a$ a
$\dot a$ a
$\ddot a$ a
$\dddot a$ ‘@
$\ddddot a$ ‘a’
$\breve a$ a
$\bar a$ a
$\vec a$ a

It’s usually a good idea to define special control sequences for accented letters
that you need frequently. If A, ¢, §, £ and Z occur a half dozen times or more in

129

130 Chapter 19. gX-rated Features

[accents in math mode

a paper, you can put

\define\Ahat{{\hat A}}
\define\chat{{\hat c}}
\define\scheck{{\check s}}
\define\xtilde{{\tilde x}}
\define\zbar{{\bar z}}

at the beginning of your file. This not only saves a lot of typing, it also makes
the input easier to read. Notice that we used an extra set of braces so that we
can type things like $2~\Ahat$ (compare page 65 and Exercise 18.2).

As in text, when an accent is placed over an i or j, you should use the dotless
forms 2 and 7. You get these by typing \imath and \jmath in math mode. For
example, $\hat\imath$ gives i.

TEX won’t object if you put a math accent over an entire formula, but there’s
usually not much point in doing this, because the accent just gets centered
over the formula. For example, $\hat{I+M}$ would produce I + M. When
mathematicians need to indicate an accent over a whole formula, they usually
resort to one of several devices.

First of all, some of the accents have wider versions. For example, there are
\widehat and \widetilde:

$\widehat x,\widetilde x$ T,T
$\widehat{xy},\widetilde{xy}$ zy, Ty
$\widehat{xyz}, \widetilde{xyz}$ TYZ, TYZ
$\widehat{xyzu}, \widetilde{xyzu}+$ Tyzu, TYZU
$\widehat{xyzuv}, \widetilde{xyzuv}$ Tyzuv, Tyzuv

These accents are in the msbm family. If msbm has been loaded, \widehat and
\widetilde will automatically select these wider versions when required; oth-
erwise, the characters on the third line will be the largest available. If you are
using the amsppt style, msbm is loaded automatically; otherwise, see Appendix
G for instructions on loading it.

Another possibility is to use notation like (I + M)~ with a ~accent in the
position of a superscript.