%% %% A DANTE-Edition example %% %% Beispiel 06-00-39 auf Seite 204. %% %% Copyright (C) 2010 H. Voss %% %% It may be distributed and/or modified under the conditions %% of the LaTeX Project Public License, either version 1.3 %% of this license or (at your option) any later version. %% %% See http://www.latex-project.org/lppl.txt for details. %% %%Run also: >> << % Show page(s) 1 \documentclass[]{article} \pagestyle{empty} \setlength\textwidth{355.65944pt} \usepackage[utf8]{inputenc} \usepackage[ngerman]{babel} \usepackage{numprint,spreadtab} \begin{document} \begin{minipage}[t]{0.45\linewidth}\vspace{0pt} $\forall x\in \mathbf{R}\qquad e^x=\sum_{k=0}^\infty\frac{x^k}{k!}$ Die nebenstehende Tabelle zeigt die Konvergenz für $x=0.5$. \end{minipage}\hfill \begin{minipage}[t]{0.45\linewidth}\vspace{0pt} \STautoround{15} \begin{spreadtab}[\STsavecell\xvalue{a1}]{{tabular}{cN{2}{15}}} \multicolumn{2}{c}{Konvergenz für $x={\numprint{:={0.5}}}$}\\[1.5ex] @$n$ & e^a1\SThidecol & {@ $\displaystyle e^{\numprint\xvalue}-\sum_{k=0}^n \frac{\numprint\xvalue^k}{k!}$}\\[3ex]\hline 0 & a1^[-1,0]/fact([-1,0]) & b2-[-1,0] \\ [0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\ [0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\ [0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\ [0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\ [0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\ [0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\ [0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\ [0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\ [0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\\hline \end{spreadtab} \end{minipage} \end{document}