% \iffalse meta-comment % % Copyright (C) 2014 by Christoph Bersch % % This work may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either version 1.3c % of this license or (at your option) any later version. % The latest version of this license is in % http://www.latex-project.org/lppl.txt % and version 1.3c or later is part of all distributions of LaTeX % version 2008/05/04 or later. % \fi % % \iffalse %<*driver> \ProvidesFile{pst-intersect.dtx} % %\NeedsTeXFormat{LaTeX2e}[1999/12/01] %\ProvidesPackage{pst-intersect} %<*stylefile> [2014/03/16 v0.4 package wrapper for pst-intersect.tex] % % %<*driver> \documentclass[a4paper, DIV=9, oneside, toc=index, parskip=half-]{scrreprt} \usepackage{scrhack} \usepackage{doc} \setcounter{IndexColumns}{2} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{lmodern} \usepackage{amsmath, marvosym} \usepackage{bera} \providecommand*\mainlang{} \usepackage[ngerman, english,\mainlang]{babel} \usepackage{prettyref} \usepackage[dvipsnames,x11names,svgnames]{xcolor} \usepackage{ragged2e, calc} \newlength{\PITcaptionmargin} \newlength{\PITcaptionheight} \usepackage[labelfont={color=DOrange}, singlelinecheck=false, justification=raggedright]{caption} \DeclareCaptionFormat{pitnocaption}{% \setlength{\PITcaptionmargin}{\widthof{#1}+7pt}% \setlength{\PITcaptionheight}{\heightof{#1}+3pt}% \hspace*{-\PITcaptionmargin}#1\par\vspace*{-\PITcaptionheight}% }% \DeclareCaptionFormat{pitcaption}{% \setlength{\PITcaptionmargin}{\widthof{#1}+7pt}% \hspace*{-\PITcaptionmargin}#1#2#3\par }% \captionsetup[lstlisting]{format=pitnocaption} \usepackage{multido} \usepackage{pst-intersect} \usepackage[makeindex]{splitidx} \usepackage{hypdoc} \hypersetup{% colorlinks=true, urlcolor=DOrange, linkcolor=pdflinkcolor, breaklinks, linktocpage=true} \usepackage{breakurl} \definecolor{DOrange}{rgb}{1,.4,.2}% \definecolor{DDOrange}{rgb}{0.7, 0.23, 0.07}% \colorlet{pdflinkcolor}{DOrange} \usepackage{showexpl} \makeatletter\renewcommand*\SX@Info{}\makeatother \usepackage{etoolbox} \undef{\cs}\undef{\cmd} \usepackage{ltxdockit} \definecolor{colKeys}{rgb}{0,0,0} \definecolor{colIdentifier}{rgb}{0,0,0} \colorlet{colComments}{green!60!black} \definecolor{colString}{rgb}{0,0.5,0} \newlength{\codeoverhang} \setlength{\codeoverhang}{0.5\marginparwidth+\marginparsep} \lstset{% language=[LaTeX]TeX, identifierstyle=\color{colIdentifier}, keywordstyle=\color{colKeys}, keywordstyle = [21]\color{DOrange}, keywordstyle = [22]\color{DOrange}, stringstyle=\color{colString}, commentstyle=\color{colComments}, alsoletter={12}, float=hbp, basicstyle=\ttfamily\small, columns=flexible, tabsize=4, showspaces=false, showstringspaces=false, breaklines=true, breakautoindent=true, breakatwhitespace=true, captionpos=t, belowcaptionskip=0pt, abovecaptionskip=0pt, xleftmargin=1em, prebreak = {\raisebox{-0.5ex}[\ht\strutbox]{\kern0.5ex\large\Righttorque}}, rulecolor=\color{black!20}, texcsstyle = [20]\color{DDOrange}, moretexcs = [20]{pssavebezier, pssavepath, pstracecurve, psintersect}, explpreset={% pos=l, width=-99pt, hsep=5mm, overhang=\codeoverhang, varwidth, vsep=\bigskipamount, rframe={}}, extendedchars=true }% \lstdefinestyle{example}{explpreset={% escapechar=*, pos=l, width=-99pt, hsep=5mm, overhang=\codeoverhang, varwidth, vsep=\bigskipamount, rframe={}}} \makeatletter \providecommand\ON{% \gdef\lst@alloverstyle##1{\textcolor{black!50}{\strut##1}% }} \providecommand\OFF{\xdef\lst@alloverstyle##1{##1}} \makeatother \colorlet{sectioncolor}{DOrange} \addtokomafont{sectioning}{\color{sectioncolor}} \usepackage[automark,nouppercase]{scrpage2} \pagestyle{scrheadings} \clearscrheadings \clearscrplain \ohead{\pagemark} \ihead{\headmark} \ofoot[\pagemark]{} \automark[subsection]{section} \setheadsepline{.4pt}[\color{DOrange}] \setheadwidth[0pt]{text} \setfootwidth[0pt]{text} \makeatletter \patchcmd{\l@chapter}{1.5em}{2em}{}{} \renewcommand*\l@section{\bprot@dottedtocline{1}{1.5em}{3.0em}} \renewcommand*\l@subsection{\bprot@dottedtocline{2}{3.8em}{4.0em}} \newrobustcmd*{\fnurl}[1][]{\hyper@normalise\ltd@fnurl{#1}} \def\ltd@fnurl#1#2{\footnote{#1\hyper@linkurl{\Hurl{#2}}{#2}}} \newrobustcmd*{\arxivurl}[1]{\href{http://arxiv.org/abs/#1}{arXiv:#1}} \newrobustcmd*{\doiurl}[1]{\href{http://dx.doi.org/#1}{DOI:#1}} \makeatother \usepackage{csquotes} \MakeAutoQuote{«}{»} %^^A spot is used in ltxdockit.sty \colorlet{spot}{sectioncolor} %^^A Fonts definitions used in ltxdockit.sty \renewcommand*{\verbatimfont}{\ttfamily} \renewcommand*{\displayverbfont}{\ttfamily} \renewcommand*{\marglistfont}{\spotcolor\sffamily\small} \renewcommand*{\margnotefont}{\sffamily\small} \renewcommand*{\optionlistfont}{\spotcolor\sffamily\displayverbfont} \renewcommand*{\ltxsyntaxfont}{\ttfamily} \renewcommand*{\ltxsyntaxlabelfont}{\spotcolor\displayverbfont} \renewcommand*{\changelogfont}{\normalfont} \renewcommand*{\changeloglabelfont}{\spotcolor\sffamily\bfseries} \makeatletter \renewenvironment*{ltxsyntax} {\list{}{% \setlength{\labelwidth}{\marglistwidth}% \setlength{\labelsep}{0pt}% \setlength{\leftmargin}{0pt}% \renewcommand*{\makelabel}[1]{% \hss\ltxsyntaxfont\ltxsyntaxlabelfont##1}}% \let\cmditem\PIT@cmditem} {\endlist} \def\ltd@optionlist{% \let\optitem\PIT@optitem \let\valitem\PIT@valitem \let\choitem\PIT@choitem \let\boolitem\PIT@boolitem \let\intitem\PIT@intitem \let\numitem\PIT@numitem \let\psnumitem\PIT@psnumitem \let\pititem\ltd@item \let\typeitem\PIT@typeitem} \def\PIT@typeitem#1#2{% \item[{#1}]% \label{prm:#1}% \begingroup\raggedright #2% \settowidth\@tempdimb{\prm{psstyle}}% \settowidth\@tempdimc{#1}% \@tempdimc=\dimexpr\@tempdimc+\labelsep-\labelwidth\relax \ifdim\@tempdimc>0pt% \@tempdima=\dimexpr\linewidth-\@tempdimb-\@tempdimc-1em\relax \else \@tempdima=\dimexpr\linewidth-\@tempdimb-1em\relax \fi \par\endgroup} \def\PIT@option#1#2#3{% \item[#1]% \begingroup\raggedright \ltd@textverb{=}% \settowidth\@tempdimb{\ltd@textverb{=}}% \settowidth\@tempdimc{#1}% \@tempdimc=\dimexpr\labelwidth-\@tempdimc\relax \ifdim\@tempdimc<0pt \@tempdima=\dimexpr\linewidth-\@tempdimb+\@tempdimc-2em\relax \else \@tempdima=\dimexpr\linewidth-\@tempdimb-2em\relax \fi \ifblank{#3} {} {\settowidth\@tempdimb{default: #3}% \@tempdima=\dimexpr\@tempdima-\@tempdimb-2em\relax}% \parbox[t]{\@tempdima}{\raggedright #2}% \ifblank{#3} {} {\hfill default:~#3}% \par\endgroup \nobreak\vspace{\itemsep}} \def\PIT@optitem{% \@ifstar {\boolfalse{@tempswa}\PIT@optitem@i} {\booltrue{@tempswa}\PIT@optitem@i}} \newcommand*{\PIT@optitem@i}[3][]{% \ifbool{@tempswa}% {\label{prm:#2}\xdefLkeyword{#2}}% {\xLkeyword{#2}}% \ifblank{#1} {\PIT@option{#2}{#3}{}} {\PIT@option{#2}{#3}{\ltd@textverb{#1}}}}% \def\PIT@valitem{% \@ifstar {\boolfalse{@tempswa}\PIT@valitem@i} {\booltrue{@tempswa}\PIT@valitem@i}} \newcommand*{\PIT@valitem@i}[3][]{% \ifbool{@tempswa}% {\label{prm:#2}\xdefLkeyword{#2}}% {\xLkeyword{#2}}% \ifblank{#1} {\PIT@option{#2}{\prm{#3}}{}} {\PIT@option{#2}{\prm{#3}}{\ltd@textverb{#1}}}}% \def\PIT@choitem{% \@ifstar {\boolfalse{@tempswa}\PIT@choitem@i} {\booltrue{@tempswa}\PIT@choitem@i}} \newcommand*{\PIT@choitem@i}[3][]{% \ifbool{@tempswa}% {\label{prm:#2}\xdefLkeyword{#2}}% {\xLkeyword{#2}}% \ifblank{#1} {\PIT@option{#2}{\ltd@verblist{#3}}{}} {\PIT@option{#2}{\ltd@verblist{#3}}{\ltd@textverb{#1}}}}% \def\PIT@boolitem{% \@ifstar {\boolfalse{@tempswa}\PIT@boolitem@i} {\booltrue{@tempswa}\PIT@boolitem@i}} \newcommand*{\PIT@boolitem@i}[2][]{% \ifbool{@tempswa}% {\label{prm:#2}\xdefLkeyword{#2}}% {\xLkeyword{#2}}% \ifblank{#1} {\PIT@option{#2}{\ltd@verblist{true,false}}{}} {\PIT@option{#2}{\ltd@verblist{true,false}}{\ltd@textverb{#1}}}}% \def\PIT@intitem{% \@ifstar {\boolfalse{@tempswa}\PIT@intitem@i} {\booltrue{@tempswa}\PIT@intitem@i}} \newcommand*{\PIT@intitem@i}[2][]{% \ifbool{@tempswa}% {\label{prm:#2}\xdefLkeyword{#2}}% {\xLkeyword{#2}}% \ifblank{#1} {\PIT@option{#2}{\prm{int}}{}} {\PIT@option{#2}{\prm{int}}{\ltd@textverb{#1}}}}% \def\PIT@numitem{% \@ifstar {\boolfalse{@tempswa}\PIT@numitem@i} {\booltrue{@tempswa}\PIT@numitem@i}} \newcommand*{\PIT@numitem@i}[2][]{% \ifbool{@tempswa}% {\label{prm:#2}\xdefLkeyword{#2}}% {\xLkeyword{#2}}% \ifblank{#1} {\PIT@option{#2}{\prm{num}}{}} {\PIT@option{#2}{\prm{num}}{\ltd@textverb{#1}}}}% \def\PIT@psnumitem{% \@ifstar {\boolfalse{@tempswa}\PIT@psnumitem@i} {\booltrue{@tempswa}\PIT@psnumitem@i}} \newcommand*{\PIT@psnumitem@i}[2][]{% \ifbool{@tempswa}% {\label{prm:#2}\xdefLkeyword{#2}}% {\xLkeyword{#2}}% \ifblank{#1} {\PIT@option{#2}{\prm{psnum}}{}} {\PIT@option{#2}{\prm{psnum}}{\ltd@textverb{#1}}}}% \def\ltd@csitem{% \@ifstar {\boolfalse{@tempswa}\ltd@csitem@i} {\booltrue{@tempswa}\ltd@csitem@i}} \def\ltd@csitem@i#1{% \ifbool{@tempswa} {\ltd@item@ii{\textbackslash#1\hspace\marglistsep}{#1}} {\ltd@item@ii{\textbackslash#1\hspace\marglistsep}{}}} \def\PIT@cmditem{% \@ifstar {\boolfalse{@tempswa}\PIT@cmditem@i} {\booltrue{@tempswa}\PIT@cmditem@i}} \def\PIT@cmditem@i#1{% \ifbool{@tempswa} {\PIT@cmditem@ii{\textbackslash#1}{cs:#1}} {\PIT@cmditem@ii{\textbackslash#1}{}}} \def\PIT@compitem{% \@ifstar {\boolfalse{@tempswa}\PIT@compitem@i} {\booltrue{@tempswa}\PIT@compitem@i}} \def\PIT@compitem@i#1{% \ifbool{@tempswa} {\PIT@cmditem@ii{\textbackslash#1}{comp:#1}} {\PIT@cmditem@ii{\textbackslash#1}{}}} \def\PIT@cmditem@ii#1#2{% \ltd@itemsave \ifhmode \itemsep-\topsep \else \ltd@itembreak \fi \item[#1]% \ltd@itemrest \ifblank{#2}{}{\label{#2}}% \begingroup \ltd@syntaxsetup \ltxsyntaxfont \let\@tempa\@empty \ltd@parseargs} \def\ltd@csitem@ii#1#2{% \ltd@itemsave \ifhmode \itemsep-\topsep \else \ltd@itembreak \fi \item[#1]% \ltd@itemrest \ifblank{#2}{}{\label{cs:#2}}% \begingroup \ltd@syntaxsetup \ltxsyntaxfont \let\@tempa\@empty \ltd@parseargs} \let\plainllap\llap \newrobustcmd\macro@llap[1]{{\global\let\llap\plainllap \setbox0=\hbox\bgroup \macro@font\small\saved@macroname\egroup \ifdim\wd0>30mm \hbox to\z@ \bgroup\hss \hbox to30mm{\unhcopy0\hss}\egroup \edef\@tempa{\hskip\dimexpr\the\wd0-30mm}\global\everypar\expandafter{\the\expandafter\everypar \@tempa \global\everypar{}}% \else \llap{\unhbox0}\fi}} \AtBeginEnvironment{macro}{\let\llap\macro@llap} \makeatother \newcommand*{\PSstring}[1]{{\normalfont\small\ttfamily(#1)}} \newcommand*{\PSarray}[1]{{\normalfont\small\ttfamily[#1]}} \newcommand*{\PSname}[1]{{\normalfont\small\ttfamily/#1}} \newcommand*{\PSproc}[1]{{\normalfont\small\ttfamily\textbraceleft #1\textbraceright}} \newcommand*{\PSvar}[1]{{\normalfont\small\ttfamily #1}} \newcommand*{\PSop}[1]{{\normalfont\small\ttfamily\color{DOrange}\hskip 3pt #1\hskip 3pt}} \newcommand*{\compref}[1]{\ref{comp:#1}} \newcommand*{\hyperpagedef}[1]{\textbf{\hyperpage{#1}}} \newcommand*{\nodename}[1]{\emph{#1}} \newcommand*{\param}[1]{\normalfont\texttt{#1}} \newcommand*{\paramvalue}[1]{\texttt{#1}} \newcommand*{\styleshape}[1]{\texttt{#1}} \newcommand{\docindex}[1]{\sindex[doc]{#1|hyperpage}} \newcommand{\docindexdef}[1]{\sindex[doc]{#1|hyperpagedef}} \makeatletter \def\Lcs{\@ifstar{\Lcs@nobm}{\Lcs@bm}} \def\Lcs@nobm#1{\nxLcs{#1}\xLcs{#1}} \def\Lcs@bm#1{\hyperref[cs:#1]{\Lcs@nobm{#1}}} \def\xLcs#1{} \def\nxLcs#1{\texttt{\textbackslash#1}} \def\Lcomp{\@ifstar{\Lcomp@nobm}{\Lcomp@bm}} \def\Lcomp@nobm#1{\nxLcomp{#1}\xLcomp{#1}} \def\Lcomp@bm#1{\hyperref[comp:#1]{\Lcomp@nobm{#1}}} \def\xLcomp#1{} \def\nxLcomp#1{\texttt{\textbackslash#1}} \def\LPack#1{\nxLPack{#1}} \def\nxLPack#1{\texttt{#1}} \def\Lenv{\@ifstar{\Lenv@nobm}{\Lenv@bm}} \def\Lenv@nobm#1{\nxLenv{#1}\xLenv{#1}} \def\Lenv@bm#1{\hyperref[env:#1]{\Lenv@nobm{#1}}} \def\xLenv#1{} \def\nxLenv#1{\texttt{#1}} \let\orig@ltd@envitem\ltd@envitem \def\ltd@envitem#1{\orig@ltd@envitem{#1}\label{env:#1}\xLenv{#1}} \def\Lkeyword{\@ifstar{\Lkeyword@nobm}{\Lkeyword@bm}} \def\Lkeyword@nobm#1{\nxLkeyword{#1}\xLkeyword{#1}} \def\Lkeyword@bm#1{\hyperref[prm:#1]{\Lkeyword@nobm{#1}}} \def\xLkeyword#1{} \def\xdefLkeyword#1{} \def\nxLkeyword#1{\texttt{#1}} \def\xLoption#1{} \def\Loption#1{\texttt{#1}\xLoption{#1}} \def\nxLoption#1{\texttt{#1}} \def\Lstyle{\@ifstar{\Lstyle@nobm}{\Lstyle@bm}} \def\Lstyle@nobm#1{\nxLstyle{#1}\xLstyle{#1}} \def\Lstyle@bm#1{\hyperref[sty:#1]{\Lstyle@nobm{#1}}} \def\xLstyle#1{} \def\xdefLstyle#1{} \def\nxLstyle#1{\texttt{#1}} \makeatother \newcommand{\dipoledesc}[1]{% \xLdipole{#1}% \compitem{#1}[options](in)(out){label}% } \newcommand{\tripoledesc}[1]{% \xLtripole{#1}% \compitem{#1}[options](in)(center)(out){label}% } \newcommand{\fiberdipoledesc}[1]{% \xLfdipole{#1}% \compitem{#1}[options](in)(out){label}% } \newenvironment*{pssyntax} {\list{}{\small \setlength{\labelsep}{0pt}% \setlength{\leftmargin}{10pt}% \item[]}} {\endlist} \newcommand{\psarglistfont}{\small} \newenvironment*{psarglist} {\list{}{% \setlength{\labelwidth}{10pt}% \setlength{\labelsep}{0pt}% \setlength{\leftmargin}{0pt}% \setlength{\itemsep}{\parsep}% \setlength{\parsep}{0pt}% \renewcommand*{\makelabel}[1]{\hss\psarglistfont##1}}} {\endlist} \makeatletter \renewenvironment{theglossary}{\GlossaryParms \let\item\@idxitem \ignorespaces}{} \makeatother \def\psargitem#1{\item[#1]\hfill\par\nobreak} \addtopsstyle{Fiber}{linecolor=DOrange,linewidth=1.5\pslinewidth} \addtopsstyle{Beam}{linewidth=1.5\pslinewidth} \EnableCrossrefs \CodelineIndex \OnlyDescription \begin{document} \DocInput{pst-intersect.dtx} \end{document} % % \fi % % \CheckSum{0} % % \CharacterTable % {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z % Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z % Digits \0\1\2\3\4\5\6\7\8\9 % Exclamation \! Double quote \" Hash (number) \# % Dollar \$ Percent \% Ampersand \& % Acute accent \' Left paren \( Right paren \) % Asterisk \* Plus \+ Comma \, % Minus \- Point \. Solidus \/ % Colon \: Semicolon \; Less than \< % Equals \= Greater than \> Question mark \? % Commercial at \@ Left bracket \[ Backslash \\ % Right bracket \] Circumflex \^ Underscore \_ % Grave accent \` Left brace \{ Vertical bar \| % Right brace \} Tilde \~} % % \GetFileInfo{pst-intersect.dtx} % % \newif\ifGERMAN \GERMANfalse % \newif\ifENGLISH \ENGLISHfalse % \iflanguage{ngerman}{\GERMANtrue}{% % \iflanguage{german}{\GERMANtrue}{\GERMANfalse}} % \iflanguage{english}{\ENGLISHtrue}{\ENGLISHfalse} % % \ifGERMAN % \newrefformat{chap}{Kap.~\ref{#1}} % \newrefformat{sec}{Kap.~\ref{#1}} % \newrefformat{l}{Zeile~\ref{#1}} % \newrefformat{ex}{Bsp.~\ref{#1}} % \newrefformat{tab}{Tab.~\ref{#1}} % \newrefformat{fig}{Abb.~\ref{#1}} % \newindex[Quelltextindex]{idx} % \newcommand{\PITindexMacro}{Makros} % \newcommand{\PITindexKeyword}{Parameter} % \newcommand{\PITindexEnv}{Umgebungen} % \newcommand{\PITindexPack}{Pakete} % \renewcommand*\lstlistingname{Bsp.} % \fi % \ifENGLISH % \newrefformat{chap}{Sec.~\ref{#1}} % \newrefformat{sec}{Sec.~\ref{#1}} % \newrefformat{l}{Line~\ref{#1}} % \newrefformat{ex}{Ex.~\ref{#1}} % \newrefformat{tab}{Tab.~\ref{#1}} % \newrefformat{fig}{Fig.~\ref{#1}} % \newindex[Code index]{idx} % \newcommand{\PITindexMacro}{macros} % \newcommand{\PITindexKeyword}{parameters} % \newcommand{\PITindexEnv}{environments} % \newcommand{\PITindexPack}{packages} % \renewcommand*\lstlistingname{Ex.} % \fi % % \makeatletter % \renewcommand\maketitle{^^A % \thispagestyle{empty}^^A % \begin{titlepage} % \begin{pspicture}(1.6in,0.685in)(10,21.7) % \psframe[fillstyle=solid,linecolor=lightgray,fillcolor=lightgray,linestyle=solid](0,-5.75)(21.5,10) % \psframe[fillstyle=solid,linecolor=Orange!85!Red,fillcolor=Orange!85!Red,linestyle=solid](0,10)(21.5,10.5) % \psframe[fillstyle=solid,linecolor=Orange!85!Red,fillcolor=Orange!85!Red,linestyle=solid](0,21.1)(21.5,21.2) % \rput[lb](3,22){\Huge\sffamily\color{Orange!65!Red}\psscalebox{2}{\textbf{PSTricks}}} % \rput[lb](3,14.1){\parbox{15cm}{\sffamily\RaggedRight\bfseries\huge\@title}} % \rput[lb](3,7.6){\parbox{13cm}{\sffamily\@date}} % \rput[lb](3,-2.6){\parbox[b]{17cm}{\sffamily\RaggedRight % ~\hfill\makebox[7cm][l]{\ifGERMAN Paketautor:\fi\ifENGLISH Package author:\fi}\\ % ~\hfill\makebox[7cm][l]{^^A % \bfseries\tabular[t]{@{}l@{}}\@author\endtabular}}} % \rput[C](11,4){\bgImage} % \end{pspicture}^^A % \end{titlepage}} % \makeatother % % \ifGERMAN % \title{\texttt{pst-intersect}\\ Berechnen der Schnittpunkte beliebiger Kurven\\[0.5ex] \small \fileversion} % \hypersetup{pdftitle={Berechnen der Schnittpunkte beliebiger Kurven}} % \fi % \ifENGLISH % \title{\texttt{pst-intersect}\\ Intersecting arbitrary curves\\[0.5ex] \small \fileversion} % \hypersetup{pdftitle={Intersecting arbitrary curves}} % \fi % \author{Christoph Bersch} % \date{\filedate} % \def\bgImage{} % % \maketitle % % \clearpage % \tableofcontents % \clearpage % % \ifGERMAN % \chapter{Einführung} % \fi % \ifENGLISH % \chapter{Introduction} % \fi % % \ifGERMAN % \section{Über das Paket} % % \LPack{pst-intersect} ist ein PSTricks-Paket zur % Berechnung der Schnittpunkte von Bézier-Kurven und beliebigen % Postscript-Pfaden. % % Beachten Sie, dass die Paket-Versionen 0.x sich in einem % experimentellen Status befinden, und sich grundlegende Änderungen % ergeben können, die zur Vorgängerversion inkompatibel sind. % \fi % \ifENGLISH % \section{About the package} % \LPack{pst-intersect} is a PSTricks package to calculate % the intersections of Bezier curves and arbitrary Postscript paths. % % Please note, that package versions 0.x are experimental, and may be % subject to fundamental changes, which aren't backward compatible. % \fi % % \ifGERMAN % \section{Anforderungen} % \LPack{pst-intersect} benötigt aktuelle Versionen der Pakete % \LPack{pstricks}, \LPack{pst-node}, \LPack{pst-eucl} und % \LPack{pst-func}. % % Alle PSTricks-Pakete machen regen Gebrauch von der Postscript-Sprache, so % dass der typische Arbeitsfluss \opt{latex}, \opt{dvips} und % ggf. \opt{ps2pdf} umfasst. Es gibt viele alternative Methoden um die % Dokumente zu % kompilieren.\fnurl{http://tug.org/PSTricks/main.cgi?file=pdf/pdfoutput} % \fi % \ifENGLISH % \section{Requirements} % \LPack{pst-intersect} requires recent versions of \LPack{pstricks}, % \LPack{pst-node}, \LPack{pst-eucl} and \LPack{pst-func}. % % All PSTricks package rely heavily on the Postscript language so that the % typical workflow involves \opt{latex}, \opt{dvips}, and \opt{ps2pdf}. Of % course there are several alternative ways to compile your % documents.\fnurl{http://tug.org/PSTricks/main.cgi?file=pdf/pdfoutput} % \fi % % \ifGERMAN % \section{Verbreitung und Installation} % Dieses Paket ist auf % CTAN\fnurl{http://mirror.ctan.org/help/Catalogue/entries/pst-intersect.html} % erhältlich. % % Das \LPack{pst-intersect}-Paket umfasst die zwei Hauptdateien % \texttt{pst-intersect.ins} und \texttt{pst-intersect.dtx}. Durch Aufrufen % von \texttt{tex pst-intersect.ins} werden die drei folgenden % Dateien erzeugt: % \begin{itemize} % \item \texttt{pst-intersect.pro}: die Postscript Prologdatei % \item \texttt{pst-intersect.sty}: die \LaTeX-Stildatei % \item \texttt{pst-intersect.tex}: die \TeX-Datei % \end{itemize} % Speichern Sie diese Dateien in einem Verzeichnis der Teil Ihres % lokalen \TeX-Baums ist. % % Vergessen Sie nicht \texttt{texhash} aufzurufen um den Baum zu % aktualisieren. MiK\TeX{}-Benutzer müssen die Dateinamen-Datenbank % (FNDB) aktualisieren. % % Detailliertere Information finden Sie in der Dokumentation Ihrer % \LaTeX-Distribution über die Installation in den lokalen % \TeX{}-Baum. % \fi % \ifENGLISH % \section{Distribution and installation} % This package is available on % CTAN\fnurl{http://mirror.ctan.org/help/Catalogue/entries/pst-intersect.html}. % % The \LPack{pst-intersect} package consists of the two main files % \texttt{pst-intersect.ins} and \texttt{pst-intersect.dtx}. By running \texttt{tex % pst-intersect.ins} the following derived files are generated: % \begin{itemize} % \item \texttt{pst-intersect.pro}: the Postscript prolog file % \item \texttt{pst-intersect.sty}: the \LaTeX{} style file % \item \texttt{pst-intersect.tex}: the \TeX{} file % \end{itemize} % Save the files in a directory which is part of your local \TeX{} tree. % % Do not forget to run \texttt{texhash} to update this tree. For MiK\TeX{} % users, do not forget to update the file name database (FNDB). % % For more detailed information see the documentation of your personal % \LaTeX{} distribution on installing packages to your local \TeX{} % system. % \fi % % \ifGERMAN\section{Lizenz}\fi % \ifENGLISH\section{License}\fi % \ifGERMAN % Es wird die Erlaubnis gewährt, dieses Dokument zu kopieren, zu verteilen % und\slash oder zu modifizieren, unter den Bestimmungen der \LaTeX{} Project % Public License, Version % 1.3c.\fnurl{http://www.latex-project.org/lppl.txt}. Dieses % Paket wird vom Autor betreut (author-maintained). % \fi % \ifENGLISH % Permission is granted % to copy, distribute and\slash or modify this software under the terms of the % \LaTeX{} Project Public License, version % 1.3c.\fnurl{http://www.latex-project.org/lppl.txt} This % package is author-maintained. % \fi % % \ifGERMAN % \section{Danksagung} % \fi % \ifENGLISH % \section{Acknowledgements} % \fi % \ifGERMAN % Ich danke Marco Cecchetti, dessen % \opt{lib2geom}-Bibliothek\fnurl{http://lib2geom.sourceforge.net/} % mir als Vorlage für einen Großteil des Postscript-Kodes für den % Bézier-Clipping-Algorithmus diente. Außerdem gilt mein Dank William % A. Casselman, für seine Erlaubnis, den Quicksort-Kode und den Kode zur % Berechung der konvexen Hüllen aus seinem Buch «Mathematical % Illustration» verwenden zu % dürfen\fnurl{http://www.math.ubc.ca/~cass/graphics/text/www/}. Der % Dokumentationsstil ist eine Mischung aus der \opt{pst-doc} Klasse % (Herbert Voß) und dem \opt{ltxdockit} Paket für die \opt{biblatex} % Dokumentation (Philipp Lehmann). % \fi % \ifENGLISH % I thank Marco Cecchetti, for his % \opt{lib2geom}-library\fnurl{http://lib2geom.sourceforge.net/} from % which I derived great parts of the Postscript code for the Bézier % clipping algorithm. Also I want to thank William A. Casselman for the % Postscript code of the quicksort procedure and the procedure for % calculating the convex hull from his book «Mathematical % Illustration»\fnurl{http://www.math.ubc.ca/~cass/graphics/text/www/}, % and the permission to use it. The documentation style is a mixture of % the \opt{pst-doc} class (Herbert Voß) and the \opt{ltxdockit} package % for the \opt{biblatex} documentation (Philipp Lehman). % \fi % % % \ifGERMAN % \chapter{Benutzung} % \fi % \ifENGLISH % \chapter{Usage} % \fi % % \ifGERMAN % Das \LPack{pst-intersect}-Paket kann Schnittpunkte von beliebigen % Postscript-Pfaden berechnen. Diese setzen sich nur aus drei primitiven % Operation zusammen: Linien (\opt{lineto}), Bézier-Kurven dritter % Ordnung (\opt{curveto}) und Sprüngen (\opt{moveto}). Speziellere % Konstruktionen, wie z.B. Kreise werden intern zu % \opt{curveto}-Anweisungen umgewandelt. Über diese Kommandos hinaus % kann \LPack{pst-intersect} auch Bézier-Kurven bis neunter Ordnung % verwenden. Das diese keine primitiven Postscript-Pfadelemente % darstellen, müssen sie gesondert behandelt werden. % % Der allgemeine Arbeitsablauf besteht darin eine oder mehrere Kurven % oder Pfade zu speichern, und danach die Schnittpunkte zu % berechnen. Anschließend können die Schnittpunkte als normale % PSTricks-Knoten verwendet werden, oder Abschnitte der Kurven und Pfade % nachgezogen werden (z.B. zwischen zwei Schnittpunkten). % \fi % \ifENGLISH % The \LPack{pst-intersect} package can compute the intersections of % arbitrary Postscript paths. These are composed of three primitive % operations: lines (\opt{lineto}), third order Bézier curves % (\opt{curveto}) and jumps (\opt{moveto}). More specialized % constructions, like circles, are converted internally to \opt{curveto} % operations. Besides these three path operations, the % \LPack{pst-intersect} supports Bézier curves up to nineth order. As % these aren't primitive Postscript path elements, they require separate % handling. % % The general workflow consists in defining and saving paths and curves, % and then compute the intersections between them. Following, those % intersection points can be used as normal PSTricks nodes, or portions % of the curves and paths can be retraced (e.g. between two % intersections). % \fi % % \ifGERMAN % \section{Speichern von Pfaden und Kurven} % \fi % \ifENGLISH % \section{Saving paths and curves} % \fi % % \ifGERMAN % % \fi % % \begin{ltxsyntax} % \cmditem{pssavepath}[options]{curvename}{commands} % % \ifGERMAN % Speichert den gesamten Pfad, der durch \prm{commands} erstellt wird, % unter Verwendung des Namens \prm{curvename}. Das Makro funktioniert % genauso wie \cs{pscustom}, und kann daher auch nur die darin % erlaubten Kommandos verarbeiten. % % In den Standardeinstellungen wird der entsprechende Pfad auch gleich % gezeichnet, was mit \prm{options} beeinflusst werden kann. Mit % \opt{linestyle=none} wird das unterbunden. % \fi % \ifENGLISH % Saves the complete path, which is generated by \prm{commands}, under % the name \prm{curvename}. The macro is a modification of % \cs{pscustom}, and does, therefore, supports only the same commands. % % By default, the path is also drawn, which can be changed over the % \prm{options}, e.g. with \opt{linestyle=none}. % \fi % \end{ltxsyntax} %\iffalse %<*ignore> %\fi \begin{LTXexample} \begin{pspicture}(3,2) \pssavepath[linecolor=DOrange]{MyPath}{% \pscurve(0,2)(0,0.5)(3,1) }% \end{pspicture} \end{LTXexample} %\iffalse % %\fi % % \begin{ltxsyntax} % \cmditem{pssavebezier}[options]{curvename}($X_0$)\ldots(\prm{$X_n$}) % % \ifGERMAN % Die Postscript-Sprache unterstützt nur Bézier-Kurven dritter % Ordnung. Mit dem Makro \Lcs{pssavebezier} können Bézier-Kurven % bis neunter Ordnung definiert werden. Die angegebenen Knoten sind die % Kontrollpunkte der Kurve, für eine Kurve $n$-ter Ordnung werden % $(n+1)$ Kontrollpunkte benötigt. Die Darstellung der Kurve erfolgt % mit dem Makro \cs{psBezier} aus dem \LPack{pst-func}-Paket. % \fi % \ifENGLISH % The Postscript language supports only third-order Bézier % curves. With the macro \Lcs{pssavebezier} you can define Bézier % curves up to nineth order. The specified nodes are the control % points of the curve, for an $n$-th order curve $n+1$ control points % are required. The drawing of the curve is done with the % \cs{psBezier} macro from the \LPack{pst-func} package. % \fi % \end{ltxsyntax} %\iffalse %<*ignore> %\fi \begin{LTXexample} \begin{pspicture}(3,2) \pssavebezier[showpoints]{MyBez}(0,0)(0,1)(1,2)(3,2)(1,0)(3,0) \end{pspicture} \end{LTXexample} %\iffalse % %\fi % % \ifGERMAN % \section{Schnittpunkte berechnen} % \fi % \ifENGLISH % \section{Calculating intersections} % \fi % % \begin{ltxsyntax} % \cmditem{psintersect}{curveA}{curveB} % % \ifGERMAN % Nachdem Sie nun Pfade oder Kurven gespeichert haben, können Sie % deren Schnittpunkte berechnen. Das geschieht mit dem Makro % \Lcs{psintersect}. Dieses benötigt als Argumente zwei Namen von % Pfaden oder Kurven (Das Argument \prm{curvename} der beiden % \cs{pssave*} Makros). % \fi % \ifENGLISH % After having saved some paths and curves, you can now calculate the % intersections. That is done with the \Lcs{psintersect} macro. This % needs as arguments two names of paths or curves (the \prm{curvename} % argument of the two \cs{pssave*} macros). % \fi % \end{ltxsyntax} % %\iffalse %<*ignore> %\fi \begin{LTXexample} \begin{pspicture}(3,2) \pssavepath[linecolor=DOrange]{MyPath}{\pscurve(0,2)(0,0.5)(3,1)} \pssavebezier{MyBez}(0,0)(0,1)(1,2)(3,2)(1,0)(3,0) \psintersect[showpoints]{MyPath}{MyBez} \end{pspicture} \end{LTXexample} %\iffalse % %\fi % % \ifGERMAN % Der PSTricks-Parameter \opt{showpoints} steuert dabei, ob die % Schnittpunkte angezeigt werden. % \fi % \ifENGLISH % The \opt{showpoints} PSTricks parameter determines, if the % intersections are drawn directly. % \fi % % \begin{optionlist} % \valitem[@tmp]{name}{string} % \ifGERMAN % Die berechneten Schnittpunkte können unter einem hier angegebenen % Namen gespeichert und zu einem späteren Zeitpunkt verwendet werden % (siehe \prettyref{sec:pstracecurve-int}). % \fi % \ifENGLISH % The calculated intersections can be saved for later use under this % name (see \prettyref{sec:pstracecurve-int}). % \fi % % \boolitem[true]{saveintersections} % \ifGERMAN % Ist dieser Schalter gesetzt, dann werden die Schnittpunkte als % PSTricks-Knoten unter den Namen \prm{name}1, \prm{name}2 \ldots % gespeichert. Die Nummerierung erfolgt aufsteigend nach dem Wert der % $x$-Koordinate. % \fi % \ifENGLISH % If this option is set, the intersections are saved as PSTricks nodes % with the names \prm{name}1, \prm{name}2 \ldots. The numbering is % ascending according to the value of their $x$-coordinate. % \fi % %\iffalse %<*ignore> %\fi \begin{LTXexample} \begin{pspicture}(5,5) \pssavebezier[linecolor=DOrange]{A}% (0,0)(0,5)(5,5)(5,1)(1,1.5) \pssavebezier{B}(0,5)(0,0)(5,0)(5,5)(0,2) \psintersect[name=C, showpoints]{A}{B} \uput[150](C1){1} \uput[85](C2){2} \uput[90](C3){3} \uput[-20](C4){4} \end{pspicture} \end{LTXexample} %\iffalse % %\fi % \end{optionlist} % % \ifGERMAN % \section{Darstellung gespeicherter Pfade} % \fi % \ifENGLISH % \section{Visualization of saved paths} % \fi % % \begin{ltxsyntax} % \cmditem{pstracecurve}[options]{curvename} % % \ifGERMAN % Gespeicherte Pfade und Kurven können mit diesem Makro nachträglich % gezeichnet werden. % \fi % \ifENGLISH % Saved paths and curves can be drawn again with this macro. % \fi % \end{ltxsyntax} % %\iffalse %<*ignore> %\fi \begin{LTXexample} \begin{pspicture}(2,2) \pssavepath{Circle}{\pscircle(1,1){1}} \pstracecurve[linestyle=dashed, linecolor=green]{Circle} \end{pspicture} \end{LTXexample} %\iffalse % %\fi % % \begin{optionlist} % \numitem{tstart} % \numitem{tstop} % % \ifGERMAN Unter Verwendung dieser beiden Parameter können auch % Abschnitte von Pfaden und Kurven gezeichnet werden. Bei Bézier-Kurven % ist der Parameterbereich $[0, 1]$, wobei $0$ dem Anfang der Kurve, % also dem ersten bei \Lcs{pssavebezier} angegebenen Knoten entspricht. % \fi % \ifENGLISH % With these parameters also parts of paths and curves can be drawn. For % Bézier curves the allowed range is $[0, 1]$, where $0$ corresponds to % the start of the curve, which is given by the first node given to % \Lcs{pssavebezier}. % \fi % %\iffalse %<*ignore> %\fi \begin{LTXexample} \begin{pspicture}(5,5) \psset{showpoints} \pssavebezier{B}(0,5)(0,0)(5,0)(5,5)(0,2) \pstracecurve[linestyle=dashed, linecolor=blue!50, tstart=0, tstop=0.5]{B} \end{pspicture} \end{LTXexample} %\iffalse % %\fi % % \medskip % \ifGERMAN % Pfaden können aus mehr als einem Abschnitt bestehen, der Bereich ist % also $[0, n]$, wobei $n$ die Anzahl der Pfadabschnitte ist. Dabei ist % zu beachten, dass z.B. \cs{pscurve}-Pfade oder auch Kreise und % Kreisbögen aus mehreren Abschnitten bestehen. % \fi % \ifENGLISH % Paths can be composed of more than one segmet, and the range is $[0, % n]$, where $n$ is the number of path segments. For this you must keep % in mind, that also e.g \cs{pscurve} paths, circles or arcs consist of % several segments. % \fi % %\iffalse %<*ignore> %\fi \begin{LTXexample} \begin{pspicture}(2,2) \pssavepath[linestyle=none]{Circle}{\pscircle(1,1){1}} \pstracecurve[tstart=0, tstop=1, linecolor=green]{Circle} \pstracecurve[tstart=2, tstop=3, linecolor=red]{Circle} \pstracecurve[tstart=1.25, tstop=1.75, linecolor=blue]{Circle} \end{pspicture} \end{LTXexample} %\iffalse % %\fi % % \end{optionlist} % % \ifGERMAN % Beachten Sie, dass die Reihenfolge von \Lkeyword{tstart} und % \Lkeyword{tstop} eine Rolle spielt. Ist \Lkeyword{tstart} % \textgreater{} \Lkeyword{tstop} dann wird die Pfadrichtung umgekehrt. % \fi % \ifENGLISH % Please note, that the order of \Lkeyword{tstart} and \Lkeyword{tstop} % plays a role. For \Lkeyword{tstart} \textgreater{} \Lkeyword{tstop} % the path direction is reversed. % \fi % % \iffalse %<*ignore> % \fi \begin{LTXexample} \begin{pspicture}(2,2) \psset{arrows=->, arrowscale=1.5} \pssavepath[linestyle=dashed, linewidth=0.5\pslinewidth]{A}{\psline(0,0)(1,2)(2,0)} \pstracecurve[tstart=0.1, tstop=0.9]{A} \end{pspicture} \end{LTXexample} \begin{LTXexample} \begin{pspicture}(2,2) \psset{arrows=->, arrowscale=1.5} \pssavepath[linestyle=dashed, linewidth=0.5\pslinewidth]{A}{\psline(0,0)(1,2)(2,0)} \pstracecurve[tstart=0.9, tstop=0.1]{A} \end{pspicture} \end{LTXexample} % \iffalse % % \fi % % \begin{ltxsyntax} % \cmditem{psGetCurvePoint}{curvename}{t} % % \ifGERMAN % Speichert die Koordinaten der Kurve \prm{curvename} am Punkt \prm{t}. % \fi % \ifENGLISH % Save the coordinates of \prm{curvename} at the point \prm{t}. % \fi % \end{ltxsyntax} % \iffalse %<*ignore> % \fi \begin{LTXexample} \begin{pspicture}(3,3) \pssavebezier{A}(0,0)(0,3)(3,0)(3,3) \multido{\r=0+0.1}{11}{% \psdot(! \psGetCurvePoint{A}{\r} I-A.x I-A.y)} \end{pspicture} \end{LTXexample} % \iffalse % % \fi % % \ifGERMAN % \section{Darstellung gespeicherter Schnitte} % \fi % \ifENGLISH % \section{Visualization of saved intersections} % \fi % \label{sec:pstracecurve-int} % % \begin{ltxsyntax} % \cmditem*{pstracecurve}[options]{intersection}{curvename} % \end{ltxsyntax} % % \begin{optionlist} % \numitem{istart} % \numitem{istop} % % \ifGERMAN % Dieser beiden Parameter können auch verwendet werden um Abschnitte von % Pfaden und Kurven zwischen Schnittpunkten zu zeichnen. Die % Schnittpunkte werden dabei angefangen bei $1$ in aufsteigender % Reihenfolge entlang der Kurve durchnummeriert. % \fi % \ifENGLISH % These two parameters can be used to draw path or curve segments % between intersections. The intersections are numbered starting at $1$ % in ascending order along the curve. % \fi % \end{optionlist} % %\iffalse %<*ignore> %\fi \begin{LTXexample} \begin{pspicture}(5.2,5.2) \pssavebezier[linewidth=0.5\pslinewidth, linestyle=dashed, arrows=->]{A}(0,0)(0,5)(5,2)(5,5) \pssavebezier[linewidth=0.5\pslinewidth, linestyle=dashed, arrows=->]{B}(0,2.5)(2.5,2.5)(4.5, 3)(2,4) \psintersect[linecolor=green!70!black, name=C]{A}{B} \pstracecurve[linecolor=red, istart=1, istop=2]{C}{A} \pstracecurve[linecolor=blue, istart=1, istop=2]{C}{B} \end{pspicture} \end{LTXexample} %\iffalse % %\fi % % \ifGERMAN % Wird nur ein Wert angegeben, beispielsweise \Lkeyword{istop}, dann % wird die Kurve vom Anfang bis zum entsprechenden Schnittpunkt % gezeichnet. Wird nur \Lkeyword{istart} angegeben, dann endet die Kurve % am Ende. Die Parameter \Lkeyword{istart} bzw. \Lkeyword{istop} können % mit \Lkeyword{tstart} bzw. \Lkeyword{tstop} kombiniert werden. % \fi % \ifENGLISH % If only one value is specified, e.g. \Lkeyword{istop}, the curve is % drawn from the start to the respective intersection. If only % \Lkeyword{istart} is given, the curve is drawn from this intersection % to the curve end. The parameters \Lkeyword{istart} and % \Lkeyword{istop} can be combined with \Lkeyword{tstart} and % \Lkeyword{tstop}. % \fi % %\iffalse %<*ignore> %\fi \begin{LTXexample} \begin{pspicture}(5.2,5.2) \pssavebezier[linewidth=0.5\pslinewidth, linestyle=dashed, arrows=->]{A}(0,0)(0,5)(5,2)(5,5) \pssavebezier[linewidth=0.5\pslinewidth, linestyle=dashed, arrows=->]{B}(0,2.5)(2.5,2.5)(4.5, 3)(2,4) \psintersect[linecolor=green!70!black, name=C]{A}{B} \pstracecurve[linecolor=red, istop=2]{C}{A} \pstracecurve[linecolor=blue, istart=1]{C}{B} \end{pspicture} \end{LTXexample} %\iffalse % %\fi % % \begin{ltxsyntax} % \cmditem{psGetIsectCenter}{intersection}{curvename}{n} % % \ifGERMAN % Lädt die Koordinaten des $n$-ten Schnittpunkts des Pfades % \prm{curvename} in der Schnittmenge \prm{intersection}. Dabei % startet die Nummer der Schnittpunkte bei \prm{n}$=1$ und wird in % Pfadrichtung durchnummeriert. % \fi % \ifENGLISH % Loads the coordinates of the $n$-th intersection point of the path % \prm{curvename} in the intersection set \prm{intersection}. The % numbering of the intersections starts at \prm{n}$=1$ and the number % increases along the path in its original direction. % \fi % \end{ltxsyntax} % % \iffalse %<*ignore> %\fi \begin{LTXexample} \begin{pspicture}(4,5) \pssavebezier[linecolor=DOrange, arrows=->]{A}% (0,0)(0,5)(5,5)(5,1)(1,1.5) \pssavebezier[arrows=->]{B}(0,5)(0,0)(5,0)(5,5)(0,2) \psintersect[name=C, showpoints]{A}{B} \color{DOrange} \uput[150](!\psGetIsectCenter{C}{A}{1} I-C1.x I-C1.y){1} \uput[85](!\psGetIsectCenter{C}{A}{2} I-C2.x I-C2.y){2} \uput[-20](!\psGetIsectCenter{C}{A}{3} I-C3.x I-C3.y){3} \uput[90](!\psGetIsectCenter{C}{A}{4} I-C4.x I-C4.y){4} \end{pspicture} \end{LTXexample} %\iffalse % %\fi % % \ifGERMAN % Wenn kein Kurvenname \prm{curvename} angegeben wird, dann werden die % Punkte nach aufsteigender $x$-Koordinate sortiert: % \fi % \ifENGLISH % Without \prm{curvename} the points are sorted according to their % $x$-coordinate: % \fi % % \iffalse %<*ignore> %\fi \begin{LTXexample} \begin{pspicture}(4,5) \pssavebezier[linecolor=DOrange, arrows=->]{A}% (0,0)(0,5)(5,5)(5,1)(1,1.5) \pssavebezier[arrows=->]{B}(0,5)(0,0)(5,0)(5,5)(0,2) \psintersect[name=C, showpoints]{A}{B} \uput[150](!\psGetIsectCenter{C}{}{1} I-C1.x I-C1.y){1} \uput[85](!\psGetIsectCenter{C}{}{2} I-C2.x I-C2.y){2} \uput[90](!\psGetIsectCenter{C}{}{3} I-C3.x I-C3.y){3} \uput[-20](!\psGetIsectCenter{C}{}{4} I-C4.x I-C4.y){4} \end{pspicture} \end{LTXexample} %\iffalse % %\fi % % \ifGERMAN % Die Schnittpunkte können auch mit \Lkeyword{saveintersections} und % \opt{saveNodeCoors} geladen werden. Diese werden dann ebenfalls nach % aufsteigender $x$-Koordinate nummeriert. % \fi % \ifENGLISH % The intersection points can also be loaded with % \Lkeyword{saveintersections} and \opt{saveNodeCoors}. In that case, % the numbering of the intersection increases according to their $x$ % coordinate. % \fi % % \ifGERMAN % \chapter{Beispiele} % \fi % \ifENGLISH % \chapter{Examples} % \fi %\iffalse %<*ignore> %\fi \begin{LTXexample}[caption={caption}] \begin{pspicture}(5,5) \pssavebezier{A}(0,0)(0,5)(5,5)(5,1)(1,1.5) \multido{\i=100+-20,\r=1+-0.2}{5}{% \pstracecurve[linecolor=red!\i, tstop=\r, arrows=-|, showpoints]{A} }% \end{pspicture} \end{LTXexample} %\iffalse % %\fi % %\iffalse %<*ignore> %\fi \begingroup \captionsetup[lstlisting]{format=pitcaption} \begin{LTXexample}[pos=t, caption={% \ifGERMAN Mit diesem Paket können auch die Schnittpunkte von Funktionen berechnet werden, die mit \cs{psplot} gezeichnet werden. Dabei ist zu beachten, dass beide einzelnen Kurven aus \opt{plotpoints} Abschnitten bestehen, von denen jeder mit jedem geschnitten wird, was zu langen Berechnungen führen kann. \fi \ifENGLISH The package can also calculate the intersections of functions which are drawn with \cs{psplot}. Here you must keep in mind, that such curves consists of \opt{plotpoints} segments, which must all be considered for intersections, what can result in long calculations. \fi}] \begin{pspicture}(10,4.4) \pssavepath{A}{\psplot[plotpoints=200]{0}{10}{x 180 mul sin 1 add 2 mul}} \pssavepath{B}{\psplot[plotpoints=50]{0}{10}{2 x neg 0.5 mul exp 4 mul}} \psintersect[name=C, showpoints]{A}{B} \multido{\i=1+1}{5}{\uput[210](C\i){\i}} \multido{\i=6+2,\ii=7+2}{3}{\uput[225](C\i){\i}\uput[-45](C\ii){\ii}} \end{pspicture} \end{LTXexample} \endgroup %\iffalse % %\fi % % \appendix % % \ifGERMAN % \chapter{Versionsgeschichte} % % Diese Versionsgeschichte ist eine Liste von Änderungen, die für den Nutzer des % Pakets von Bedeutung sind. Änderungen, die eher technischer Natur sind und für % den Nutzer des Pakets nicht relevant sind und das Verhalten des Pakets nicht % ändern, werden nicht aufgeführt. Wenn ein Eintrag der Versionsgeschichte ein % Feature als \emph{improved} oder \emph{extended} bekannt gibt, so bedeutet % dies, dass eine Modifikation die Syntax und das Verhalten des Pakets nicht % beeinflusst, oder das es für ältere Versionen kompatibel ist. Einträge, die % als \emph{deprecated}, \emph{modified}, \emph{renamed}, oder \emph{removed} % deklariert sind, verlangen besondere Aufmerksamkeit. Diese bedeuten, dass eine % Modifikation Änderungen in existierenden Dokumenten mit sich ziehen kann. % \fi % \ifENGLISH % \chapter{Revision history} % % This revision history is a list of changes relevant to users of this % package. Changes of a more technical nature which do not affect the % user interface or the behavior of the package are not included in the % list. If an entry in the revision history states that a feature has % been \emph{improved} or \emph{extended}, this indicates a modification % which either does not affect the syntax and behavior of the package or % is syntactically backwards compatible (such as the addition of an % optional argument to an existing command). Entries stating that a % feature has been \emph{deprecated}, \emph{modified}, \emph{fixed}, % \emph{renamed}, or \emph{removed} demand attention. They indicate a % modification which may require changes to existing documents. % \fi % % \begin{changelog} % \patchcmd{\release}{\setlength{\itemsep}{0pt}}{\setlength{\itemsep}{0pt}\setlength{\parsep}{0pt}}{}{} % \begin{release}{0.4}{2014-03-16} % \item Added \cs{psGetCurvePoint}. % \item Fixed \cs{pstracecurve} for use with \cs{pscustom}. % \item Fixed arrow behavior. % \end{release} % \begin{release}{0.3}{2014-03-04} % \item Fixed \cs{psGetIsectNode} to work with more than one segment. % \item Modified \cs{psGetIsectNode} and the naming conventions of the % variables. % \item Fixed missing support for \opt{pst-node}'s \opt{saveNodeCoors} % parameter to \opt{saveintersections}. % \end{release} % \begin{release}{0.2}{2014-02-26} % \item Added support for \opt{arrows} parameter to \cs{pstracecurve}. % \item Modified parameters \opt{tstart}, \opt{tstop}, \opt{istart} % and \opt{istop} to respect different directions. % \item Added \cs{psGetIsectCenter} % \item Fixed a bug in the termination of the iteration procedure. % \item Fixed a bug in the point order of Bézier curves, which was % related to a now fixed bug in \opt{pst-func}. % \item Several other improvements. % \end{release} % \begin{release}{0.1}{2014-02-19} % \item First CTAN version % \end{release} % \end{changelog} % % \StopEventually{} % % \begin{otherlanguage}{english} % \printindex[idx] % \end{otherlanguage} % % \chapter{The \LaTeX\ wrapper} %<*stylefile> % \begin{macrocode} \RequirePackage{pstricks} \RequirePackage{pst-xkey} \RequirePackage{pst-node} \RequirePackage{pst-func} \input{pst-intersect.tex} \IfFileExists{pst-intersect.pro}{% \ProvidesFile{pst-intersect.pro} [2014/03/16 PostScript prologue file] \@addtofilelist{pst-intersect.pro}}{}% % \end{macrocode} % % % \chapter{The \TeX\ implementation} % %<*texfile> % \begin{macrocode} \csname PSTintersectLoaded\endcsname \let\PSTintersectLoaded\endinput \ifx\PSTricksLoaded\endinput\else\input pstricks.tex \fi \ifx\PSTXKeyLoaded\endinput\else \input pst-xkey.tex \fi \ifx\PSTnodesLoaded\endinput\else\input pst-node.tex \fi \ifx\PSTfuncLoaded\endinput\else \input pst-func.tex \fi \edef\PstAtCode{\the\catcode`\@} \catcode`\@=11\relax \pst@addfams{intersect} \pstheader{pst-intersect.pro} \def\pst@intersectdict{tx@IntersectDict begin } \def\PIT@dict#1{\pst@intersectdict #1 end} \def\PIT@Verb#1{\pst@Verb{\PIT@dict{#1} }}% % \end{macrocode} % \section{The parameter definitions} % \begin{macrocode} \define@key[psset]{intersect}{tstart}{% \pst@checknum{#1}\PIT@key@tstart } \define@key[psset]{intersect}{tstop}{% \pst@checknum{#1}\PIT@key@tstop } \define@key[psset]{intersect}{istart}{% \pst@checknum{#1}\PIT@key@istart } \define@key[psset]{intersect}{istop}{% \pst@checknum{#1}\PIT@key@istop } \define@key[psset]{intersect}{name}{% \def\PIT@key@name{#1}% }% \newif\PIT@saveintersections \define@boolkey[psset]{intersect}[PIT@]{saveintersections}[true]{} \newif\PIT@addintersections \define@boolkey[psset]{intersect}[PIT@]{addintersections}[true]{} \psset[intersect]{% tstart=-1, tstop=-1, istart=-1, istop=-1, name={}, saveintersections, addintersections=false }% % \end{macrocode} % % \begin{macro}{\PIT@use@pscode} % This is a modified version of the \cs{use@pscode} core macro. It % explicitely allows the content of the stack to be moved outside the % local Postscript-scope created by the \cs{pstverb} macro. This % allows to save these values on the global level for later % use. Beware, that you cannot leave arrays or marks on the stack. % \begin{macrocode} \def\PIT@use@pscode{% \pstverb{% \pst@dict \tx@STP \pst@newpath \psk@origin \psk@swapaxes \pst@code end count /ocount exch def }% \gdef\pst@code{}% }% % \end{macrocode} % \end{macro} % % \begin{macro}{\PIT@save@path} % Modified version of the \cs{pst@stroke} core macro, which puts the % whole current path on the stack. % \begin{macrocode} \let\PIT@pst@stroke@orig\pst@stroke \def\PIT@save@path{% \PIT@pst@stroke@orig \addto@pscode{% clear mark \pst@intersectdict GetFullPath end counttomark 1 add -1 roll pop count }% }% % \end{macrocode} % \end{macro} % % \begin{macrocode} \def\PIT@name@default{@tmp}% \def\PIT@name#1{PIT@#1}% \def\PIT@checkname#1{% \ifx\@empty#1\@empty \@pstrickserr{Unexpected empty argument!}\@ehpb \fi }% % \end{macrocode} % % \begin{macro}{\pssavebezier} % \begin{macrocode} \def\pssavebezier{\pst@object{pssavebezier}} % \end{macrocode} % \end{macro} % % \begin{macro}{\pssavebezier@i} % Process all nodes following the \cs{pssavebezier} macro call. % \begin{macrocode} \def\pssavebezier@i#1{% \begin@OpenObj \PIT@checkname{#1}% \addto@pscode{ /\PIT@name{#1} }% \pst@getcoors[\pssavebezier@ii%] }% % \end{macrocode} % \end{macro} % % \begin{macro}{\pssavebezier@ii} % This does the whole actual work. % \begin{macrocode} \def\pssavebezier@ii{% \addto@pscode{% % \end{macrocode} % only 10 points allowed, remove the rest % \begin{macrocode} counttomark 20 gt { counttomark 20 sub { pop } repeat } if counttomark 2 idiv 1 sub \psk@plotpoints\space exch \txFunc@BezierCurve \ifshowpoints \txFunc@BezierShowPoints \else pop \fi tx@FuncDict begin Points aload pop end }% \let\use@pscode\PIT@use@pscode \end@OpenObj \PIT@Verb{% [ count 1 sub 1 roll ] ArrayToPointArray def }% \ignorespaces}% % \end{macrocode} % \end{macro} % % \begin{macro}{\pssavepath} % \begin{macrocode} \def\pssavepath{\pst@object{pssavepath}}% % \end{macrocode} % \end{macro} % % \begin{macro}{\pssavepath@i} % \begin{macrocode} \long\def\pssavepath@i#1#2{% \begin@SpecialObj \PIT@checkname{#1}% \let\pst@stroke\PIT@save@path \let\use@pscode\PIT@use@pscode \pscustom{#2}% \PIT@Verb{% /\PIT@name{#1} [ 3 -1 roll 2 add 2 roll ] def }% \end@SpecialObj }% % \end{macrocode} % \end{macro} % % \begin{macro}{\pstracecurve} % \begin{macrocode} \def\pstracecurve{\pst@object{pstracecurve}}% % \end{macrocode} % \end{macro} % % \begin{macro}{\pstracecurve@i} % \begin{macrocode} \def\pstracecurve@i#1{% \addbefore@par{plotpoints=200}% \begin@OpenObj \@ifnextchar\bgroup {\PIT@traceintersection{#1}}% {\PIT@tracecurve{#1}}% }% % \end{macrocode} % \end{macro} % % \begin{macro}{\PIT@tracecurve} % \begin{macrocode} \def\PIT@tracecurve#1{% \PIT@checkname{#1}% \addto@pscode{% \pst@intersectdict /\PIT@name{#1} currentdict exch known not { (You haven't defined the curve '#1') == } if \PIT@name{#1} \PIT@key@tstart\space\PIT@key@tstop\space % [curve] tstart tstop {\psk@plotpoints exch \txFunc@BezierCurve \ifshowpoints \txFunc@BezierShowPoints \else pop \fi } TraceCurveOrPath end }% %\showpointsfalse \end@OpenObj }% % \end{macrocode} % \end{macro} % % \begin{macro}{PIT@traceintersection} % \begin{macrocode} \def\PIT@traceintersection#1#2{% \PIT@checkname{#2}% \addto@pscode{% \pst@intersectdict \ifx\\#1\\% /\PIT@name{\PIT@name@default} \else /\PIT@name{#1} \fi dup currentdict exch known not { \ifx\\#1\\% (You haven't defined an intersection!) == \else (You haven't defined the intersection '#1') == \fi } if load dup dup type /dicttype eq exch /\PIT@name{#2} known and not { (You haven't defined the intersection '#2') == } if dup /\PIT@name{#2} get exch /\PIT@name{#2}@t get dup length \PIT@key@istart\space ge 0 \PIT@key@istart\space lt and { dup \PIT@key@istart\space cvi 1 sub get } { \PIT@key@tstart } ifelse exch % [curve] t_istart|tstart [ts] dup length \PIT@key@istop\space ge 0 \PIT@key@istop\space lt and { \PIT@key@istop\space cvi 1 sub get } { pop \PIT@key@tstop } ifelse % [curve] tstart tstop {\psk@plotpoints exch \txFunc@BezierCurve \ifshowpoints \txFunc@BezierShowPoints \else pop \fi } TraceCurveOrPath end }% %\showpointsfalse \end@OpenObj }% % \end{macrocode} % \end{macro} % % \begin{macro}{\psintersect} % \begin{macrocode} \def\psintersect{\pst@object{psintersect}} \def\psintersect@i#1#2{% \PIT@checkname{#1}% \PIT@checkname{#2}% \begin@SpecialObj \def\PIT@@name{% \ifx\PIT@key@name\@empty \PIT@name{\PIT@name@default} \else \PIT@name{\PIT@key@name} \fi}% \PIT@Verb{% currentdict /\PIT@name{#1} known not { (You haven't defined the curve or path '#1') == } if currentdict /\PIT@name{#2} known not { (You haven't defined the curve or path '#2') == } if \PIT@name{#1} \PIT@name{#2} \PIT@name{#1} IsPath { \PIT@name{#2} IsPath { IntersectPaths }{ IntersectPathCurve } ifelse }{ \PIT@name{#2} IsPath { IntersectCurvePath }{ IntersectBeziers 4 copy LoadIntersectionPoints 5 1 roll } ifelse } ifelse /\PIT@name{#1} /\PIT@name{#2} /\PIT@@name \ifPIT@addintersections true \else false \fi SaveIntersection }% \ifPIT@saveintersections \pst@Verb{% \pst@intersectdict \PIT@@name\space /Points get ArrayToPointArray end dup length 1 1 3 -1 roll { 2 copy 1 sub get \ifPst@saveNodeCoors \pst@intersectdict 2 copy aload pop \tx@UserCoor 3 -1 roll 20 string cvs (N-\PIT@key@name) exch strcat dup (.y) strcat cvn exch (.x) strcat cvn end 4 -1 roll def exch def \fi cvx false 3 -1 roll (N@\PIT@key@name) exch 20 string cvs \pst@intersectdict strcat end cvn tx@NodeDict begin 10 {InitPnode} /NodeScale {} def NewNode end } for pop }% \fi \ifshowpoints \addto@pscode{% \pst@intersectdict [ \PIT@@name\space /Points get aload pop end }% \psdots@ii \else \end@SpecialObj \fi }% % \end{macrocode} % \end{macro} % % \begin{macro}{\psGetIsectCenter} % \begin{macrocode} \def\psGetIsectCenter#1#2#3{% \pst@intersectdict \ifx\\#2\\% \PIT@name{#1} /Points get dup #3 1 sub 2 mul get exch #3 2 mul 1 sub get \else \PIT@name{#1} /\PIT@name{#2@t} get #3 1 sub get \PIT@name{#1} /\PIT@name{#2} get dup IsPath { PreparePath dup length 1 sub 3 -1 roll dup dup cvi sub 4 1 roll cvi sub get } if PointArrayToArray tx@FuncDict begin 2 dict begin dup length 2 idiv 1 sub /BezierType exch def /Points exch def GetBezierCoor end end \fi end \tx@UserCoor /I-#1#3.y exch def /I-#1#3.x exch def }% % \end{macrocode} % \end{macro} % % \begin{macro}{\psGetCurvePoint} % \begin{macrocode} \def\psGetCurvePoint#1#2{% \pst@intersectdict currentdict /\PIT@name{#1} known not { (You haven't defined the curve or path '#1') == } if #2 \PIT@name{#1} GetCurvePoint \tx@UserCoor end /I-#1.y exch def /I-#1.x exch def }% % \end{macrocode} % \end{macro} % \begin{macrocode} \catcode`\@=\PstAtCode\relax % \end{macrocode} % % % \chapter{The Postscript header file} % \makeatletter %^^A Copied this definition from doc.sty and changed it not to add a %^^A backslash to the Postscript procedure name in the index. % \def\SpecialIndex@#1#2{% % \@SpecialIndexHelper@#1\@nil % \def\@tempb{ }% % \ifcat \@tempb\@gtempa % \special@index{\quotechar\space\actualchar % \string\verb\quotechar*\verbatimchar % \quotechar\space\verbatimchar#2}% % \else % \def\@tempb##1##2\relax{\ifx\relax##2\relax % \def\@tempc{\special@index{\quotechar##1\actualchar % \string\verb\quotechar*\verbatimchar % \quotechar##1\verbatimchar#2}}% % \else % \def\@tempc{\special@index{##1##2\actualchar % \string\verb\quotechar*\verbatimchar##1##2\verbatimchar#2}}% % \fi}% % \expandafter\@tempb\@gtempa\relax % \@tempc % \fi} % \makeatother % %<*prolog> % \begin{macrocode} /tx@IntersectDict 200 dict def tx@IntersectDict begin % \end{macrocode} % These are some helper procedures for vector operations. % % \begin{macro}{VecAdd} % Addition of two vectors. % \begin{pssyntax} % \PSvar{Xa Ya Xb Yb} \PSop{VecAdd} \PSvar{Xa+Xb Ya+Yb} % \end{pssyntax} % \begin{macrocode} /VecAdd { 3 -1 roll add 3 1 roll add exch } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{VecSub} % Subtraction of two vectors. % \begin{pssyntax} % \PSvar{Xa Ya Xb Yb} \PSop{VecSub} \PSvar{Xa-Xb Ya-Yb} % \end{pssyntax} % \begin{macrocode} /VecSub { neg 3 -1 roll add 3 1 roll neg add exch } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{VecScale} % Scale a vector by a factor \PSvar{fac}. % \begin{pssyntax} % \PSvar{Xa Ya fac} \PSop{VecScale} \PSvar{fac}$\cdot$\PSvar{Xa} \PSvar{fac}$\cdot$\PSvar{Ya} % \end{pssyntax} % \begin{macrocode} /VecScale { dup 4 -1 roll mul 3 1 roll mul } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{ToPnt} % Convert two numbers to a procedure holding the two values. This % representation is used to save coordinate values of nodes and vectors. % \begin{pssyntax} % \PSvar{X Y} \PSop{ToPnt} \PSarray{X Y} % \end{pssyntax} % \begin{macrocode} /ToPnt { [ 3 1 roll ] } bind def % \end{macrocode} % \end{macro} % % \PSvar{MaxPrecision} gives the precision of the curve parameter t for the % intersection. This shouldn't be lower than $10^{-6}$, because % PostScript uses single precision. % \begin{macrocode} /MaxPrecision 1e-6 def % \end{macrocode} % % \PSvar{Epsilon} gives the allowed relative error of the intersection point. % \begin{macrocode} /Epsilon 1e-4 def % \end{macrocode} % % The threshold for curve subdivision, see below. % \begin{macrocode} /MinClippedSizeThreshold 0.8 def % \end{macrocode} % % The predefined intervals for the subdivision of the curves. % \begin{macrocode} /H1Interval [0 0.5] def /H2Interval [0.5 MaxPrecision add 1] def % \end{macrocode} % % \begin{macro}{IntersectBeziers} % The main procedure, which computes the intersection of two bezier % curves of arbitrary order. This, and most of the following % procedures operate on curves, which are stored as arrays of points, % the points are also arrays with two elements -- \PSvar{X} and % \PSvar{Y}. A Bezier curve of $n$-th order is then givesn by % \PSarray{\PSarray{X0 Y0} \PSarray{X1 Y1} \ldots \PSarray{XN YN}}. % % \begin{pssyntax} % \PSarray{curveA} \PSarray{curveB} \PSop{IntersectBeziers} % \PSarray{curveA} \PSarray{tA} \PSarray{curveB} \PSarray{tB} % \end{pssyntax} % \begin{macrocode} /IntersectBeziers { 2 copy length 2 eq exch length 2 eq and { IntersectLineSegms }{ 2 copy [0 1] [0 1] IterateIntersection } ifelse 3 -1 roll exch } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{IntersectLines} % Intersect two lines. % \begin{pssyntax} % \PSarray{lineA} \PSarray{lineB} \PSop{IntersectLines} % \PSarray{lineA} \PSarray{lineB} \PSarray{tA} \PSarray{tB} % \end{pssyntax} % \begin{macrocode} /IntersectLines { (IntersectLines) DebugBegin 2 copy exch { aload pop } forall 5 -1 roll { aload pop } forall 8 -2 roll 2 copy 10 4 roll 4 2 roll 2 copy 6 2 roll 10 2 roll VecSub 6 2 roll 4 2 roll VecSub 8 4 roll 4 2 roll VecSub % \end{macrocode} % X3-X4 Y3-Y4 X2-X1 Y2-Y1 X3-X1 Y3-Y1 % b1 b2 a1 a2 c1 c2 % \begin{macrocode} 6 copy 12 -4 roll neg 4 -1 roll mul 3 1 roll mul add dup 0 eq { % \end{macrocode} % no intersections % \begin{macrocode} 9 { pop } repeat [] [] } { dup 10 1 roll 5 1 roll 4 -1 roll mul 3 1 roll mul sub exch div 6 1 roll 4 -1 roll mul 3 1 roll mul sub exch div [ exch ] exch [ exch ] } ifelse DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{IntersectLineSegms} % Intersect two line segments. This uses the output of % \PSop{IntersectLines} and checks if both line parameters are in the % range [0,1]. % \begin{pssyntax} % \PSarray{lineA} \PSarray{lineB} \PSop{IntersectLineSegms} % \PSarray{lineA} \PSarray{lineB} \PSarray{tA} \PSarray{tB} % \end{pssyntax} % \begin{macrocode} /IntersectLineSegms { IntersectLines dup length 0 eq not { % \end{macrocode} % IntersectLines has found an intersection % \begin{macrocode} 0 get exch 0 get 2 copy 2 copy 0 ge exch 0 ge and 3 1 roll 1 le exch 1 le and and { [ exch ] exch [ exch ] } { pop pop [] [] } ifelse } if } bind def % \end{macrocode} % \end{macro} % \begin{macro}{IntersectLineSegmLine} % Intersect a line segment with a line. This uses % \PSop{IntersectLines} and checks if the line parameter of the line % segment is in the range [0,1]. % \begin{pssyntax} % \PSarray{lineA} \PSarray{lineSegmB} \PSop{IntersectLineLineSegm} % \PSarray{lineA} \PSarray{tA} \PSarray{lineSegmB} \PSarray{tB} % \end{pssyntax} % \begin{macrocode} /IntersectLineLineSegm { tx@IntersectDict begin IntersectLines end dup length 0 eq not { % \end{macrocode} % IntersectLines has found an intersection % \begin{macrocode} 0 get dup dup 0 ge exch 1 le and { [ exch ] } { pop pop [] [] } ifelse } if 3 -1 roll exch } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{IntersectLinePath} % Compute the first intersection of a line with a path. If an intersection was % found, also the respective path segment remains on the stack for % later computations. % \begin{pssyntax} % \PSarray{lineA} \PSarray{pathB} \PSop{IntersectLinePath} % \PSarray{segment} \PSvar{t} \PSarray{intersection} % \end{pssyntax} % \begin{macrocode} /IntersectLinePath { (IntersectLinePath) DebugBegin 3 dict begin PreparePath % \end{macrocode} % First elongate lineA such, that it could intersect with any segment in pathB % \begin{macrocode} 2 copy ElongateLine exch 3 -1 roll pop /isect [] def /t -1 def /n -1 def { /n n 1 add def 2 copy IntersectBeziers dup 5 1 roll LoadIntersectionPoints dup length 0 gt { % \end{macrocode} % one intersection found, clean up and exit % \begin{macrocode} /isect exch def 0 get aload pop add 0.5 mul n add /t exch def exch pop exit } { pop pop pop } ifelse } forall t isect end DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{ElongateLine} % Elongate \PSarray{line} to potentially intersect with every segment % in \PSarray{path}. % \begin{pssyntax} % \PSarray{lineA} \PSarray{path} \PSop{ElongateLine} \PSarray{lineA'} % \end{pssyntax} % \begin{macrocode} /ElongateLine { exch { aload pop } forall 4 2 roll 2 copy 6 2 roll VecSub 0 5 1 roll 6 -1 roll { % \end{macrocode} % 0 x0 y0 dx dy [segm\_i] % \begin{macrocode} { aload pop % \end{macrocode} % max x0 y0 dx dy P\_ij.x P\_ij.y % \begin{macrocode} 6 2 roll 4 copy 10 4 roll 6 2 roll VecSub 4 2 roll tx@EcldDict begin Project end tx@Dict begin Pyth end 6 -1 roll 2 copy gt { pop } { exch pop } ifelse 5 1 roll } forall } forall % \end{macrocode} % dmax x0 y0 dx dy % \begin{macrocode} % for a line 5 -1 roll VecScale 4 copy VecSub ToPnt 5 1 roll VecAdd ToPnt ToPnt % for a ray %4 2 roll 2 copy ToPnt 6 1 roll 4 2 roll 5 -1 roll 1.1 mul VecScale VecAdd ToPnt ToPnt } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{IntersectPaths} % \begin{pssyntax} % \PSarray{pathA} \PSarray{pathB} \PSop{IntersectPaths} % \PSarray{intersections} \PSarray{pathA} \PSarray{tA} \PSarray{pathB} \PSarray{tB} % \end{pssyntax} % \begin{macrocode} /IntersectPaths { (IntersectPaths) DebugBegin 6 dict begin 2 copy exch PreparePath dup length /nA exch def exch PreparePath dup length /nB exch def /isect [] def /tA [] def /tB [] def { % [pathA] [Bi] /nB nB 1 sub def exch dup 3 1 roll % [pathA] [Bi] [pathA] { /nA nA 1 sub def exch dup 3 1 roll % [pathA] [Bi] [Aj] [Bi] IntersectBeziers % [curveA] [tA] [curveB] [tB] 4 copy LoadIntersectionPoints [ exch isect aload pop ] /isect exch def exch pop 3 -1 roll pop [ tB aload length 2 add -1 roll TArray { nB add } forall ] /tB exch def [ tA aload length 2 add -1 roll TArray { nA add } forall ] /tA exch def } forall pop % remove [Bi] dup length /nA exch def } forall pop % remove [pathA] [ isect { aload pop } forall ] 3 1 roll tA exch tB end DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{IntersectCurvePath} % \begin{pssyntax} % \PSarray{curveA} \PSarray{pathB} \PSop{IntersectCurvePath} % \PSarray{intersections} \PSarray{curveA} \PSarray{tA} \PSarray{pathB} \PSarray{tB} % \end{pssyntax} % \begin{macrocode} /IntersectCurvePath { (IntersectCurvePath) DebugBegin 6 dict begin 2 copy PreparePath dup length /n exch def /isect [] def /tA [] def /tB [] def { /n n 1 sub def exch dup 3 -1 roll IntersectBeziers 4 copy LoadIntersectionPoints [ exch isect aload pop ] /isect exch def pop 3 -1 roll pop [ tB aload length 2 add -1 roll TArray { n add } forall ] /tB exch def [ tA aload length 2 add -1 roll TArray aload pop ] /tA exch def } forall pop [ isect { aload pop } forall ] 3 1 roll tA exch tB end DebugEnd } bind def /IntersectPathCurve { exch IntersectCurvePath 4 2 roll } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{MergeAndSort} % Merge and sort two arrays. That may be point arrays or simple % arrays. Both arrays must be of the same type, but that is not % checked. % \begin{macrocode} /MergeAndSortArrays { [ 3 1 roll aload pop counttomark -1 roll aload pop ] dup length 0 gt { dup dup 0 get type /arraytype eq { hulldict /comp get } { /lt } ifelse exch quicksort } if } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{SaveIntersection} % \begin{pssyntax} % \PSarray{intersectionpoints} \PSarray{A} \PSarray{tA} \PSarray{B} \PSarray{tB} % \PSname{nameA} \PSname{nameB} \PSname{isectname} \PSvar{add?} % \PSop{SaveIntersection} % \end{pssyntax} % \begin{macrocode} /SaveIntersection { (SaveIntersection) DebugBegin exch dup 3 1 roll % isectname add? isectname currentdict exch known and { % \end{macrocode} % Want to add the new intersections to an existing intersection. Merge % the new arrays with the existing ones and resort the \PSvar{Points} % and \PSvar{\ldots @t} arrays. % \begin{macrocode} load begin % pnts A tA B tB /A /B dup currentdict exch known { % /nameB already saved. 4 -1 roll pop % pnts A tA tB /A /B nametostr (@t) strcat cvn dup load 4 -1 roll MergeAndSortArrays def } { dup 5 -1 roll def % pnts A tA B tB /A /B nametostr (@t) strcat cvn 3 -1 roll TArray def } ifelse % pnts A tA /A dup currentdict exch known { % /nameB already saved. 3 -1 roll pop nametostr (@t) strcat cvn dup load 3 -1 roll MergeAndSortArrays def } { dup 4 -1 roll def nametostr (@t) strcat cvn exch TArray def } ifelse /Points exch ArrayToPointArray Points ArrayToPointArray MergeAndSortArrays PointArrayToArray def end } { 4 dict dup 3 1 roll def begin dup 5 -1 roll def nametostr (@t) strcat cvn 3 -1 roll TArray def dup 4 -1 roll def nametostr (@t) strcat cvn exch TArray def /Points exch def end } ifelse DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{TArray} % The curve parameters \PSvar{t} as determined by % \PSvar{IntersectBeziers} are given in a special array % construct. \PSvar{TArray} creates a simple array with the % \PSvar{t}-values given in ascending order. % % \begin{pssyntax} % \PSarray{\PSarray{t0a t0b} \ldots \PSvar{null}\ldots \PSvar{integer}} % \PSop{TArray} \PSarray{t0 t1 \ldots tN} % \end{pssyntax} % \begin{macrocode} /TArray { dup length 0 gt { dup 0 get type /arraytype eq { [ exch { %dup type /nulltype eq { pop exit } if aload pop add 0.5 mul } forall ] } if dup /lt exch quicksort } if } bind def % \end{macrocode} % \end{macro} % % We can save arbitrary paths using \PSvar{pathforall}. The saved path % contains the commands \PSname{movetype}, \PSname{linetype} and % \PSname{curvetype}. By default, these are defined as the respective % original procedures. % \begin{macrocode} /InitTracing { /movetype /moveto load def /linetype /lineto load def /curvetype /curveto load def } bind def %^^AInitTracing /GetFullPath { (GetFullPath) DebugBegin { /movetype counttomark 3 roll } { /linetype counttomark 3 roll } { /curvetype counttomark 7 roll }{} pathforall DebugEnd } bind def % \end{macrocode} % % \begin{macro}{ReversePath} % \begin{macrocode} /ReversePath { gsave newpath [ exch aload pop InitTracing { counttomark 0 eq { exit } if load exec } loop reversepath GetFullPath ] grestore } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{ReverseCurve} % Reverse direction of a bezier curve. % \begin{pssyntax} % \PSarray{\PSarray{X0 Y0} \ldots \PSarray{XN YN}} % \PSop{ReverseCurve} \PSarray{\PSarray{XN YN} \ldots \PSarray{X0 Y0}} % \end{pssyntax} % \begin{macrocode} /ReverseCurve { PointArrayToArray aload pop % [ tstart tstop [ X0 Y0 X1 Y1... counttomark -2 4 { 2 roll } for ] ArrayToPointArray } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{ReverseInterval} % \begin{pssyntax} % \PSarray{path} \PSvar{tstart} \PSvar{tstop} \PSop{ReverseInterval} % \PSarray{path} \PSvar{L-tstop} \PSvar{L-tstart} % \end{pssyntax} % \begin{macrocode} /ReverseInterval { 3 -1 roll dup 4 1 roll GetSegmentCount dup 4 1 roll exch sub 3 1 roll sub exch } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{UnifyInterval} % Unifies the interval \PSarray{tstart tstop}. If \PSvar{tstart} is % negative, 0 is used. If \PSvar{tstop} is negative, the curve length % is used. A too large \PSvar{tstop} is also truncated to the curve % length. % \begin{pssyntax} % \PSarray{curve} \PSvar{tstart tstop} \PSop{UnifyInterval} % \PSarray{curve} \PSvar{tstart' tstop} % \end{pssyntax} % \begin{macrocode} /UnifyInterval { exch dup 0 lt { pop 0 } if exch 3 -1 roll dup 4 1 roll GetSegmentCount 2 copy exch dup 3 1 roll % [curve] tstart tstop cnt tstop cnt tstop lt exch 0 lt or { exch } if pop % (tstop < 0 | cnt < tstop) } bind def % \end{macrocode} % \end{macro} % \begin{macro}{PreparePath} % [ ... /movetype ... /linetype .../curvetype ] % \begin{macrocode} /PreparePath { (PreparePath) DebugBegin [ exch aload pop { dup type /nametype eq not { exit } if dup /movetype eq { pop ToPnt /@mycp exch def } { dup /linetype eq { pop [ @mycp 4 2 roll 2 copy ToPnt /@mycp exch def ToPnt ] } { pop [ @mycp 8 2 roll 2 copy ToPnt /@mycp exch def ToPnt 5 1 roll ToPnt 4 1 roll ToPnt 3 1 roll ] } ifelse counttomark 1 roll } ifelse } loop ] DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{GetSegmentCount} % Count the number of path or bezier curve segments. Bezier curves % always have the length 1, independent of their order. For paths, % only the \PSname{linetype} and \PSname{curvetype} segments are % counted. % \begin{pssyntax} % \PSarray{CurveOrPath} \PSop{GetSegmentCount} \PSvar{cnt} % \end{pssyntax} % % \begin{macrocode} /GetSegmentCount { (GetSegmentCount) DebugBegin dup IsPath { [ exch aload pop 0 { counttomark 1 eq { exit } if exch dup /movetype eq { pop 3 1 roll pop pop }{ dup /linetype eq { pop 1 add 3 1 roll pop pop }{ pop 1 add 7 1 roll 6 { pop } repeat } ifelse } ifelse } loop exch pop } { % a Bezier curve is a single segment length 0 gt { 1 } { 0 } ifelse } ifelse DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{LoadLineIntersectionPoints} % \begin{pssyntax} % \PSarray{curve} \PSarray{t} \PSop{LoadLineIntersectionPoints} % \PSarray{I0.x I0.y \ldots IN.x YN.x} % \end{pssyntax} % \begin{macrocode} /LoadLineIntersectionPoints { (LoadLineIntersectionPoints) DebugBegin exch [ exch { aload pop } forall ] tx@Dict begin tx@FuncDict begin 2 dict begin dup length 2 idiv 1 sub /BezierType exch def /Points exch def [ exch { GetBezierCoor } forall ] end end end DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{LoadCurveIntersectionPoints} % Load the intersection points. This loads the same intersection point % from both curves, and chooses the one with the lowest error. % \begin{pssyntax} % \PSarray{curveA} \PSarray{tA} \PSarray{curveB} \PSarray{tB} % \PSop{LoadCurveIntersectionPoints} % \PSarray{I0.x I0.y \ldots IN.x YN.x} % \end{pssyntax} % \begin{macrocode} /LoadCurveIntersectionPoints { (LoadCurveIntersectionPoints) DebugBegin 2 { 4 2 roll [ exch { aload pop } forall ] exch [ exch { aload pop } forall ] } repeat % \end{macrocode} % [A0.x A0.y ... AM.x AM.y] [tA0a tA0b ... tAMa tAMb] [tB0a tB0b ... tBNa tBNb] [B0.x B0.y ... BN.x BN.y] % \begin{macrocode} tx@Dict begin tx@FuncDict begin 2 dict begin dup length 2 idiv 1 sub /BezierType exch def /Points exch def [ exch { GetBezierCoor } forall ] 3 1 roll dup length 2 idiv 1 sub /BezierType exch def /Points exch def [ exch { GetBezierCoor } forall ] end % \end{macrocode} % [IB0.xa IB0.ya IB0.xb IB0.yb ... IBM.yb] [IA0.xa IA0.ya IA0.xb IA0.yb ... IAM.yb] % \begin{macrocode} 2 { [ exch aload length 4 idiv { [ 5 1 roll ] counttomark 1 roll } repeat ] exch } repeat % \end{macrocode} % [[IB0.xa ...] ... [... IBM.yb]] [[IA0.xa IA0.ya IA0.xb IA0.yb] ...[IAM.xa ... IAM.yb]] % \begin{macrocode} 2 { dup hulldict /comp get exch quicksort exch } repeat 2 dict begin /B exch def /A exch def [ 0 1 A length 1 sub { dup A exch get exch B exch get % [IAi] [IBi] 2 copy aload pop VecSub Pyth exch aload pop VecSub Pyth lt { exch } if pop aload pop VecAdd 0.5 VecScale } for ] end end end DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{LoadIntersectionPoints} % \begin{macrocode} /LoadIntersectionPoints { (LoadIntersectionPoints) DebugBegin 4 copy pop exch pop length 2 eq exch length 2 eq and { pop pop LoadLineIntersectionPoints }{ LoadCurveIntersectionPoints } ifelse DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{IterateIntersection} % Iteration procedure to compute all intersections of CurveA and CurveB. % This contains the % % \begin{pssyntax} % \PSarray{CurveA} \PSarray{CurveB} \PSarray{intervalA} \PSarray{intervalB} % \PSop{IterateIntersection} \PSarray{domsA} \PSarray{domsB} % \end{pssyntax} % \begin{macrocode} /IterateIntersection { (IterateIntersection) DebugBegin 12 dict begin /precision MaxPrecision def 4 2 roll 2 copy 6 2 roll dup IsPath not { PointArrayToArray } if 0 exch { dup type /nametype eq { pop }{ abs max} ifelse } forall exch dup IsPath not { PointArrayToArray } if { dup type /nametype eq { pop }{ abs max} ifelse } forall Epsilon mul /epsilon exch def % \end{macrocode} % in order to limit recursion % \begin{macrocode} /counter 0 def /depth 0 def /domsA [] def /domsB [] def /domsA /domsB 6 2 roll _IterateIntersection domsB domsA end dup length 0 gt { TArraysRemoveDup } if DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{TArraysRemoveDup} % \begin{macrocode} /TArraysRemoveDup { 4 dict begin /tB exch def /tA exch def /j 0 def [ tA 0 get tB 0 get 1 1 tA length 1 sub { /i exch def tA j get aload pop tA i get aload pop tx@Dict begin Pyth2 end MaxPrecision gt tB j get aload pop tB i get aload pop tx@Dict begin Pyth2 end MaxPrecision gt and { % keep the current parameter point /j i def tB i get tA i get counttomark 2 idiv 1 add 1 roll } if } for counttomark 2 idiv 1 add [ exch 1 roll ] % [ ... [tB] counttomark 1 add 1 roll ] exch % [tA] [tB] end } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{_IterateIntersection} % This is the iteration part which is called recursively. % % \begin{pssyntax} % \PSname{domsA} \PSname{domsB} \PSarray{CurveA} \PSarray{CurveB} % \PSarray{domA} \PSarray{domB} \PSop{\_IterateIntersection} % \end{pssyntax} % \begin{macrocode} /_IterateIntersection { (_IterateIntersection) DebugBegin CloneVec /domB exch def CloneVec /domA exch def CloneCurve /CurveB exch def CloneCurve /CurveA exch def /iter 0 def /depth depth 1 add def /dom null def /counter counter 1 add def CheckIT { (>> curve subdivision performed: dom(A) = ) domA CurveToString strcat (, dom(B) = ) strcat domB CurveToString strcat ( <<) strcat == } if CurveA IsConstant CurveB IsConstant and { CurveA MiddlePoint ToPnt CurveB MiddlePoint ToPnt AreNear { domA domB 4 -1 roll exch PutInterval PutInterval } { pop pop } ifelse }{ counter 100 lt { % \end{macrocode} % Use a loop to simulate some kind of return to exit at different positions. % \begin{macrocode} { /iter iter 1 add def iter 100 lt domA Extent precision ge domB Extent precision ge or and not { iter 100 ge { false } { CurveA MiddlePoint ToPnt CurveB MiddlePoint ToPnt AreNear { domA domB true }{ false } ifelse } ifelse exit } if % \end{macrocode} % iter < 100 \&\& (dompA.extent() >= precision || dompB.extent() >= precision) % \begin{macrocode} CheckIT { (counter: ) counter 20 string cvs strcat (, iter: ) iter 20 string cvs strcat strcat (, depth: ) depth 20 string cvs strcat strcat == } if CurveA CurveB ClipCurve /dom exch def CheckIT {(dom : ) dom CurveToString strcat == } if dom IsEmptyInterval { CheckIT { (empty interval, exit) == } if false exit } if % \end{macrocode} % dom[0] > dom[1], invalid. % \begin{macrocode} dom aload pop 2 copy min 3 1 roll max gt { CheckIT { (dom[0] > dom[1], invalid!) == } if false exit } if domB dom MapTo /domB exch def CurveB dom Portion CurveB IsConstant CurveA IsConstant and { CheckIT { (both curves are constant: ) == (C1: [ ) CurveA { CurveToString ( ) strcat strcat } forall (]) strcat == (C2: [ ) CurveB { CurveToString ( ) strcat strcat } forall (]) strcat == } if CurveA MiddlePoint ToPnt CurveB MiddlePoint ToPnt AreNear { domA domB true } { false } ifelse exit } if % \end{macrocode} % If we have clipped less than 20%, we need to subdivide the % curve with the largest domain into two sub-curves. % \begin{macrocode} dom Extent MinClippedSizeThreshold gt { CheckIT { (clipped less than 20% : ) == (angle(A) = ) CurveA dup length 1 sub get aload pop CurveA 0 get aload pop VecSub exch 2 copy 0 eq exch 0 eq and { pop pop (NaN) } { atan 20 string cvs } ifelse strcat == (angle(B) = ) CurveB dup length 1 sub get aload pop CurveB 0 get aload pop VecSub exch 2 copy 0 eq exch 0 eq and { pop pop (NaN) } { atan 20 string cvs } ifelse strcat == (dom : ) == dom == (domB :) == domB == } if % \end{macrocode} % Leave those five values on the stack to revert to the current state after the recursive calls. % \begin{macrocode} CurveA CurveB domA domB iter 7 -2 roll 2 copy 9 2 roll 2 copy % \end{macrocode} % On the stack: /domsA /domsB CurveA CurveB domA domB iter /domsA /domsB /domsA /domsB % \begin{macrocode} domA Extent domB Extent gt { CurveA CloneCurve dup H1Interval Portion % pC1 CurveA CloneCurve dup H2Interval Portion % pC2 domA H1Interval MapTo % dompC1 domA H2Interval MapTo % dompC2 % \end{macrocode} % Need on the stack: /domsA /domsB pC2 CurveB dompC2 domB /domsA /domsB pC1 CurveB dompC1 domB % \begin{macrocode} 3 -1 roll exch % /domsA /domsB /domsA /domsB pC1 dompC1 pC2 dompC2 CurveB exch domB 8 4 roll % /domsA /domsB pC2 CurveB dompC2 domB /domsA /domsB pC1 dompC1 CurveB exch domB % /domsA /domsB pC2 CurveB dompC2 domB /domsA /domsB pC1 CurveB dompC1 domB } { CurveB CloneCurve dup H1Interval Portion % pC1 CurveB CloneCurve dup H2Interval Portion % pC2 domB H1Interval MapTo % dompC1 domB H2Interval MapTo % dompC2 % \end{macrocode} % Need on the stack: /domsB /domsA pC2 CurveA dompC2 domA /domsB /domsA pC1 CurveA dompC1 domA % \begin{macrocode} 8 -2 roll exch 8 2 roll 6 -2 roll exch 6 2 roll % /domsB /domsA /domsB /domsA pC1 pC2 dompC1 dompC2 3 -1 roll exch % /domsB /domsA /domsB /domsA pC1 dompC1 pC2 dompC2 CurveA exch domA 8 4 roll % /domsB /domsA pC2 CurveA dompC2 domA /domsB /domsA pC1 dompC1 CurveA exch domA % /domsB /domsA pC2 CurveA dompC2 domA /domsB /domsA pC1 CurveA dompC1 domA } ifelse _IterateIntersection _IterateIntersection % \end{macrocode} % Restore the state before the recursive calls. % \begin{macrocode} /iter exch def /domB exch def /domA exch def /CurveB exch def /CurveA exch def false exit } if CurveA CurveB /CurveA exch def /CurveB exch def domA domB /domA exch def /domB exch def % \end{macrocode} % exchange /domsA and /domsB on the stack! % \begin{macrocode} exch } loop % \end{macrocode} % boolean on stack % \begin{macrocode} { 4 -1 roll exch PutInterval PutInterval CheckIT { (found an intersection ============================) == } if } { pop pop } ifelse } { pop pop } ifelse } ifelse /depth depth 1 sub def DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{PutInterval} % Add a new interval \PSarray{newinterval} to the array stored in % \PSname{/Intervals}. The new interval is "cloned" before storing it. % \begin{pssyntax} % \PSname{Intervals} \PSarray{newinterval} \PSop{PutInterval} % \end{pssyntax} % \begin{macrocode} /PutInterval { CloneVec [ exch 3 -1 roll dup 4 1 roll load aload pop ] def } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{IsEmptyInterval} % Check if an interval is empty, which is represented by a [1 0] interval. % \begin{pssyntax} % \PSarray{interval} \PSop{IsEmptyInterval} \PSvar{boolean} % \end{pssyntax} % \begin{macrocode} /IsEmptyInterval { aload pop 0 eq exch 1 eq and } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{ToUnitInterval} % Limit an interval \PSvar{a b} to the unit interval \PSarray{0 1}. % \begin{pssyntax} % \PSvar{a b} \PSop{ToUnitInterval} \PSarray{a|0 b|1} % \end{pssyntax} % \begin{macrocode} /ToUnitInterval { ToUnitRange exch ToUnitRange 2 copy gt { exch } if ToPnt } bind def % \end{macrocode} % \end{macro} % \begin{macro}{ToUnitRange} % Limit a number to the range \PSarray{0 1}. % \begin{macrocode} /ToUnitRange { dup 0 lt { pop 0 }{ dup 1 gt { pop 1 } if } ifelse } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{CloneCurve} % Does a deep copy of the array \PSarray{Curve}. This also involved deep copies of the contained point arrays. % \begin{pssyntax} % \PSarray{Curve} \PSop{CloneCurve} \PSarray{newCurve} % \end{pssyntax} % \begin{macrocode} /CloneCurve { [ exch { CloneVec } forall ] } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{CloneVec} % Does a deep copy of the vector \PSarray{X Y} % \begin{pssyntax} % \PSarray{X Y} \PSop{CloneVec} \PSarray{Xnew Ynew} % \end{pssyntax} % \begin{macrocode} /CloneVec { aload pop ToPnt } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{MapTo} % Map the sub-interval \PSarray{I} in \PSarray{0 1} into the interval \PSarray{J}. Returns a new array. % \begin{pssyntax} % \PSarray{J} \PSarray{I} \PSop{MapTo} \PSarray{Jnew} % \end{pssyntax} % \begin{macrocode} /MapTo { (MapTo) DebugBegin exch aload 0 get 3 1 roll exch sub 2 copy % [I] J0 Jextent J0 Jextent 5 -1 roll aload aload pop % J0 Jextent J0 Jextent I0 I1 I0 I1 min 4 -1 roll mul % J0 Jextent J0 I0 I1 min(I0,I1)*Jextent 4 -1 roll add [ exch % J0 Jextent I0 I1 [ J0new 6 2 roll max mul add ] DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{Portion} % Compute the portion of the Bezier curve \PSarray{CurveB} wrt the interval \PSarray{I}. % \begin{pssyntax} % \PSarray{CurveB} \PSarray{I} \PSop{Portion} \PSarray{CurvePartB} % \end{pssyntax} % \begin{macrocode} /Portion { (Portion) DebugBegin dup Min 0 eq { % [CurveB] [I] % I.min() == 0 Max dup 1 eq {% [CurveB] I.max() % I.max() == 1 pop pop } { % [CurveB] I.max() LeftPortion } ifelse } { % [CurveB] [I] 2 copy Min % [CurveB] [I] [CurveB] I.min() RightPortion dup Max 1 eq { % I.max() == 1 pop pop } {% [CurveB] [I] dup aload pop exch sub 1 3 -1 roll Min sub div % [CurveB] (I1-I0)/(1-I.min()) LeftPortion } ifelse } ifelse DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{LeftPortion} % Compute the portion of the Bezier curve \PSarray{CurveB} wrt the % interval \PSarray{0 t}. % \begin{pssyntax} % \PSarray{CurveB} \PSvar{t} \PSop{LeftPortion} \PSarray{CurvePartB} % \end{pssyntax} % \begin{macrocode} /LeftPortion { (LeftPortion) DebugBegin exch dup length 1 sub dup 4 1 roll % L-1 t [CurveB] L-1 1 1 3 -1 roll { % L-1 t [CurveB] i 4 -1 roll dup 5 1 roll % L-1 t [CurveB] i L-1 -1 3 -1 roll % L-1 t [CurveB] L-1 -1 i { % L-1 t [CurveB] j 2 copy 5 copy % L-1 t [CurveB] j [CurveB] j t [CurveB] j [CurveB] j 1 sub get 3 1 roll get % L-1 t [CurveB] j [CurveB] j t B[j-1] B[j] Lerp put pop % L-1 t [CurveB] } for } for pop pop pop DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{RightPortion} % Compute the portion of the Bezier curve \PSarray{CurveB} wrt the % interval \PSarray{t 1}. % \begin{pssyntax} % \PSarray{CurveB} \PSvar{t} \PSop{RightPortion} \PSarray{CurvePartB} % \end{pssyntax} % \begin{macrocode} /RightPortion { (RightPortion) DebugBegin exch dup length 1 sub dup 4 1 roll % L-1 t [CurveB] L-1 1 1 3 -1 roll {% L-1 t [CurveB] i 4 -1 roll dup 5 1 roll % L-1 t [CurveB] i L-1 exch sub 0 1 3 -1 roll % L-1 t [CurveB] 0 1 L-i-1 {% L-1 t [CurveB] j 2 copy 5 copy get 3 1 roll 1 add get Lerp put pop } for } for pop pop pop DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{Lerp} % Given two points and a parameter \PSvar{t} $\in$ \PSarray{0 1}, return a point % proportionally from \PSarray{A} to \PSarray{B} by \PSvar{t}. Akin to 1 degree Bezier. % \begin{pssyntax} % \PSvar{t} \PSarray{A} \PSarray{B} \PSop{Lerp} \PSarray{newpoint} % \end{pssyntax} % \begin{macrocode} /Lerp { (Lerp) DebugBegin 3 -1 roll dup 1 exch sub 3 1 roll % [A] (1-t) [B] t exch aload pop 3 -1 roll VecScale % [A] (1-t) B.x*t B.y*t 4 2 roll exch aload pop 3 -1 roll VecScale VecAdd ToPnt % [A.x*(1-t)+B.x*t A.y*(1-t)+B.y*t] DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{IsConstant} % Test if all points of a curve are near to each other. This is used as termination criterium for the intersection procedure. % \begin{pssyntax} % \PSarray{Curve} \PSop{IsConstant} \PSvar{boolean} % \end{pssyntax} % \begin{macrocode} /IsConstant { aload length [ exch 1 roll ] true 3 1 roll { exch dup 4 1 roll AreNear and exch } forall pop } bind def % \end{macrocode} % \end{macro} % \begin{macro}{AreNear} % Test if two points are near to each other. % \begin{pssyntax} % \PSarray{P1} \PSarray{P2} \PSop{AreNear} \PSvar{boolean} % \end{pssyntax} % \begin{macrocode} /AreNear { (AreNear) DebugBegin aload pop 3 -1 roll aload pop VecSub abs epsilon lt exch abs epsilon lt and DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{Min} % Get the minimum value of the vector \PSarray{P}. % \begin{pssyntax} % \PSarray{P} \PSop{Min} \PSvar{minimum} % \end{pssyntax} % \begin{macrocode} /Min { aload pop min } bind def % \end{macrocode} % \end{macro} % \begin{macro}{Min} % Get the maximum value of the vector \PSarray{P}. % \begin{pssyntax} % \PSarray{P} \PSop{Max} \PSvar{maximum} % \end{pssyntax} % \begin{macrocode} /Max { aload pop max } bind def % \end{macrocode} % \end{macro} % \begin{macro}{Min} % Get the extent of the interval \PSarray{I}. % \begin{pssyntax} % \PSarray{I} \PSop{Extent} \PSvar{I1-I0} % \end{pssyntax} % \begin{macrocode} /Extent { aload pop exch sub } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{MiddlePoint} % Compute the middle point of the first and last point of \PSarray{Curve}. % \begin{pssyntax} % \PSarray{Curve} \PSop{MiddlePoint} \PSvar{X Y} % \end{pssyntax} % \begin{macrocode} /MiddlePoint { dup dup length 1 sub get aload pop 3 -1 roll 0 get aload pop VecAdd 0.5 VecScale } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{OrthogonalOrientationLine} % \begin{pssyntax} % \PSvar{MiddlePointA} \PSarray{CurveB} \PSop{OrthogonalOrientationLine} \PSvar{A B C} % \end{pssyntax} % \begin{macrocode} /OrthogonalOrientationLine { (OrthogonalOrientationLine) DebugBegin dup dup length 1 sub get aload pop 3 -1 roll 0 get aload pop VecSub % \end{macrocode} % rotate by +90 degrees % \begin{macrocode} neg exch 4 2 roll 2 copy 6 2 roll VecAdd ImplicitLine DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{PickOrientationLine} % Pick an orientation line for a Bezier curve. This uses the first % point and the lastmost point, which is not near to it. % \begin{pssyntax} % \PSarray{Curve} \PSop{PickOrientationLine} \PSvar{A B C} % \end{pssyntax} % \begin{macrocode} /PickOrientationLine { (PickOrientationLine) DebugBegin dup dup length 1 sub exch 0 get% [Curve] L-1 P0 exch -1 1 {% [Curve] P0 i 3 -1 roll dup 4 1 roll exch get % [Curve] P0 Pi 2 copy AreNear { pop } { exit } ifelse } for 3 -1 roll pop exch aload pop 3 -1 roll aload pop ImplicitLine DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{ImplicitLine} % Compute the coefficients \PSvar{A}, \PSvar{B}, \PSvar{C} of the normalized implicit equation % of the line which goes through the points \PSarray{Xi Yi} and \PSarray{Xj Yj}. % % \begin{pssyntax} % \PSvar{Xi Yi Xj Yj} \PSop{ImplicitLine} \PSvar{A B C} % \end{pssyntax} % \begin{macrocode} /ImplicitLine { 4 copy % Xi Yi Xj Yj Xi Yi Xj Yj 3 -1 roll sub 7 1 roll sub 5 1 roll % Yj-Yi Xi-Xj Xi Yi Xj Yj % Yi*Xj - Xi*Yj 4 -1 roll mul neg % Yj-Yi Xi-Xj Yi Xj -Yj*Xi 3 1 roll mul add % Yj-Yi Xi-Xj Yi*Xj-Yj*Xi | l0 l1 l2 3 1 roll 2 copy tx@Dict begin Pyth end dup dup % l2 l0 l1 L L L 5 -1 roll exch % l2 l1 L L l0 L div 5 1 roll % l0/L l2 l1 L L 3 1 roll div % l0/L l2 L l1/L 3 1 roll div % l0/L l1/L l2/L } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{distance} % Compute the distance of point \PSarray{X Y} from the implicit line given % by $Ax + By + C = 0,\quad (A^2+B^2 = 1)$. % \begin{pssyntax} % \PSvar{X Y A B C} \PSop{distance} \PSvar{d} % \end{pssyntax} % \begin{macrocode} /distance { 5 1 roll 3 -1 roll mul 3 1 roll mul add add } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{ArrayToPointArray} % \begin{pssyntax} % \PSarray{A.x A.y ... N.x N.y} \PSop{ArrayToPointArray} \PSarray{\PSarray{A.x A.y} \ldots \PSarray{N.x N.y}} % \end{pssyntax} % \begin{macrocode} /ArrayToPointArray { aload length dup 2 idiv { 3 1 roll [ 3 1 roll ] exch dup 1 sub 3 1 roll 1 roll } repeat 1 add [ exch 1 roll ] } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{PointArrayToArray} % \begin{pssyntax} % \PSarray{\PSarray{A.x A.y} \ldots \PSarray{N.x N.y}} \PSop{PointArrayToArray} \PSarray{A.x A.y ... N.x N.y} % \end{pssyntax} % \begin{macrocode} /PointArrayToArray { aload length dup { 1 add dup 3 -1 roll aload pop 4 -1 roll 1 add 2 roll } repeat 1 add [ exch 1 roll ] } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{ClipCurve} % Clip the Bezier curve B with respect to the Bezier curve A for % individuating intersection points. The new parameter interval for the % clipped curve is pushed on the stack. % \begin{pssyntax} % \PSarray{CurveA} \PSarray{CurveB} \PSop{ClipCurve} \PSarray{newinterval} % \end{pssyntax} % \begin{macrocode} /ClipCurve { (ClipCurve) DebugBegin 4 dict begin /CurveB exch def /CurveA exch def CurveA IsConstant { CurveA MiddlePoint CurveB OrthogonalOrientationLine } { CurveA PickOrientationLine } ifelse CheckIT { 3 copy exch 3 -1 roll (OrientationLine : ) 3 { exch 20 string cvs ( ) strcat strcat } repeat == } if CurveA FatLineBounds CheckIT { dup (FatLineBounds : ) exch aload pop exch 20 string cvs (, ) strcat exch 20 string cvs strcat strcat == } if CurveB ClipCurveInterval end DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{FatLineBounds} % Compute the boundary of the fat line given by \PSvar{A B C} % \begin{pssyntax} % \PSvar{A B C} \PSarray{Curve} \PSop{FatLineBounds} \PSvar{A B C} \PSarray{dmin dmax} % \end{pssyntax} % \begin{macrocode} /FatLineBounds { (FatLineBounds) DebugBegin /dmin 0 def /dmax 0 def { 4 copy aload pop 5 2 roll distance dup dmin lt { dup /dmin exch def } if dup dmax gt { dup /dmax exch def } if pop pop } forall [dmin dmax] DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{ClipCurveInterval} % Clip the Bezier curve wrt the fat line defined by the orientation % line (given by \PSvar{A B C}) and the interval range % \PSarray{bound}. The new parameter interval \PSarray{newinterval} % for the clipped curve is pushed on the stack. % \begin{pssyntax} % \PSvar{A B C} \PSarray{bound} \PSarray{curve} \PSop{ClipCurveInterval} \PSarray{newinterval} % \end{pssyntax} % \begin{macrocode} /ClipCurveInterval { (ClipCurveInterval) DebugBegin 15 dict begin /curve exch def aload pop 2 copy min /boundMin exch def max /boundMax exch def [ 4 1 roll ] cvx /fatline exch def % number of sub-intervals /n curve length 1 sub def % distance curve control points /D n 1 add array def 0 1 n { % i dup curve exch get aload pop % i Pi.x Pi.y fatline distance % distance d of Point i from the orientation line, on stack; i d exch dup n div % d i i/n [ exch 4 -1 roll ] % i [ i/n d ] D 3 1 roll put } for D ConvexHull /D exch def % \end{macrocode} % get the x-coordinate of the i-th point, i getX -> D[i][X] % \begin{macrocode} /getX { D exch get 0 get } def % \end{macrocode} % get the y-coordinate of the i-th point, i getY -> D[i][Y] % \begin{macrocode} /getY { D exch get 1 get } def /tmin 1 def /tmax 0 def 0 getY dup boundMin lt /plower exch def boundMax gt /phigher exch def plower phigher or not { % \end{macrocode} % inside the fat line % \begin{macrocode} tmin 0 getX gt { /tmin 0 getX def } if tmax 0 getX lt { /tmax 0 getX def } if } if 1 1 D length 1 sub { /i exch def /clower i getY boundMin lt def /chigher i getY boundMax gt def clower chigher or not { % \end{macrocode} % inside the fat line % \begin{macrocode} tmin i getX gt { /tmin i getX def } if tmax i getX lt { /tmax i getX def } if } if clower plower eq not { % \end{macrocode} % cross the lower bound % \begin{macrocode} boundMin i 1 sub i D Intersect % t on stack dup tmin lt { dup /tmin exch def } if dup tmax gt { dup /tmax exch def } if pop /plower clower def } if chigher phigher eq not { % \end{macrocode} % cross the upper bound % \begin{macrocode} boundMax i 1 sub i D Intersect dup tmin lt { dup /tmin exch def } if dup tmax gt { dup /tmax exch def } if pop /phigher chigher def } if } for % \end{macrocode} % we have to test the closing segment for intersection % \begin{macrocode} /i D length 1 sub def /clower 0 getY boundMin lt def /chigher 0 getY boundMax gt def clower plower eq not { % \end{macrocode} % cross the lower bound % \begin{macrocode} boundMin i 0 D Intersect dup tmin lt { dup /tmin exch def } if dup tmax gt { dup /tmax exch def } if pop } if chigher phigher eq not { % \end{macrocode} % cross the lower bound % \begin{macrocode} boundMax i 0 D Intersect dup tmin lt { dup /tmin exch def } if dup tmax gt { dup /tmax exch def } if pop } if [tmin tmax] end DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{Intersect} % Get the x component of the intersection point between the line % passing through $i$-th and $j$-th points of \PSarray{Curve} and the % horizonal line through \PSvar{y}. % \begin{pssyntax} % \PSvar{y i j} \PSarray{Curve} \PSop{Intersect} \PSvar{Xisect} % \end{pssyntax} % \begin{macrocode} /Intersect { dup 4 -1 roll get aload pop 4 2 roll exch get aload pop % \end{macrocode} % On the stack: \PSvar{y Xi Yi Xj Yj}, Compute (Xj - Xi) * (y - Yi)/(Yj - Yi) + Xi % % We are sure, that Yi != Yj, because this procedure is called only % when the lower or upper bound is crossed. % \begin{macrocode} 4 2 roll 2 copy 6 2 roll VecSub 5 2 roll neg 3 -1 roll add 3 -1 roll div 3 -1 roll mul add } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{IsPath} % Check if an array is a path. A path is represented as array, which % contains other arrays which represent native Postscript % operations. Those can be \PSarray{X Y /@m}, \PSarray{X Y /@l}, or % \PSarray{X1 Y1 X2 Y2 X3 Y3 /@c}. % % \begin{pssyntax} % \PSarray{array} \PSop{IsPath} \PSvar{boolean} % \end{pssyntax} % \begin{macrocode} /IsPath { dup length 1 sub get type /nametype eq { true } { false } ifelse } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{ShowPathPortion} % \begin{pssyntax} % \PSarray{path} \PSvar{tstart tstop} \PSop{ShowPathPortion} % \end{pssyntax} % \begin{macrocode} /ShowPathPortion { (ShowPathPortion) DebugBegin 8 dict begin /tstop exch def /tstart exch def /savecp { ToPnt cvx /@cp exch def } def InitTracing /n 0 def mark exch aload pop { counttomark 0 eq n tstop ge or { cleartomark exit } if dup /movetype eq not { /n n 1 add def } if dup /movetype eq { pop savecp } { tstart n ge { % \end{macrocode} % current path section is before tstop % \begin{macrocode} /curvetype eq { 6 2 roll 4 { pop } repeat } if savecp } { tstart n 1 sub gt tstop n lt or { % \end{macrocode} % draw a truncated segment % \begin{macrocode} tstart n sub 1 add tstop n sub 1 add ToUnitInterval exch /linetype eq { 3 1 roll ToPnt tstart n 1 sub gt { @cp ToPnt } { currentpoint ToPnt } ifelse exch ToPnt dup 3 -1 roll Portion aload pop exch tstart n 1 sub gt { % \end{macrocode} % This is the start segment, move to the starting point, as it lies in the middle of the segment. % \begin{macrocode} exch aload pop 3 -1 roll aload pop ArrowA tstop n le { % \end{macrocode} % only a single segment, draw also the ending arrow % \begin{macrocode} currentpoint 4 2 roll ArrowB linetype pop pop } { % \end{macrocode} % other segments to follow % \begin{macrocode} linetype } ifelse } { % \end{macrocode} % this is the last segment % \begin{macrocode} pop aload pop currentpoint 4 2 roll ArrowB linetype pop pop } ifelse } { 7 1 roll [ tstart n 1 sub gt { @cp }{ currentpoint } ifelse 9 3 roll ] ArrayToPointArray dup 3 -1 roll Portion { aload pop } forall tstart n 1 sub gt { 8 -4 roll 4 2 roll ArrowA 6 2 roll } { 8 -2 roll pop pop } ifelse tstop n le { ArrowB } if curvetype } ifelse }{ % \end{macrocode} % full segment % \begin{macrocode} tstart n 1 sub eq { % \end{macrocode} % the first segment % \begin{macrocode} /linetype eq { @cp ArrowA tstop n eq { % \end{macrocode} % a single, full segment % \begin{macrocode} currentpoint 4 2 roll ArrowB linetype pop pop } { % \end{macrocode} % not the last segment % \begin{macrocode} linetype } ifelse } { 6 -2 roll @cp ArrowA 6 2 roll tstop n eq { % \end{macrocode} % single, full curve segment % \begin{macrocode} ArrowB } if curvetype } ifelse } { % \end{macrocode} % not the first segment % \begin{macrocode} /linetype eq { tstop n eq { % \end{macrocode} % last segment but not a single one % \begin{macrocode} currentpoint 4 2 roll ArrowB linetype pop pop }{ % \end{macrocode} % full middle segment % \begin{macrocode} linetype } ifelse } { tstop n eq { % \end{macrocode} % last curveto segment, not a single one % \begin{macrocode} ArrowB } if curvetype } ifelse } ifelse } ifelse } ifelse } ifelse } loop end DebugEnd } bind def % \end{macrocode} % \end{macro} % % \begin{macro}{GetCurvePoint} % Get the coordinates of the curve point at \PSvar{t}. % \begin{pssyntax} % \PSvar{t} \PSarray{curve} \PSop{GetCurvePoint} \PSvar{X Y} % \end{pssyntax} % \begin{macrocode} /GetCurvePoint { dup IsPath { 5 dict begin exch dup /tstart exch def 1 add cvi /tstop exch def /savecp { ToPnt cvx /@cp exch def } def /n 0 def mark exch aload pop { counttomark 0 eq n tstop ge or { cleartomark exit } if dup /movetype eq not { /n n 1 add def } if dup /movetype eq { pop savecp } { tstart n ge { % \end{macrocode} % current path section is before tstop % \begin{macrocode} /curvetype eq { 6 2 roll 4 { pop } repeat } if savecp } { tstart n 1 sub gt { tstart n sub 1 add tstop n sub 1 add ToUnitInterval exch /linetype eq { 3 1 roll ToPnt tstart n 1 sub gt { @cp ToPnt } { currentpoint ToPnt } ifelse exch ToPnt dup 3 -1 roll Portion } { 7 1 roll [ @cp 9 3 roll ] ArrayToPointArray dup 3 -1 roll Portion } ifelse 0 get aload pop }{ % \end{macrocode} % full segment % \begin{macrocode} /curvetype eq { pop pop pop pop } if } ifelse counttomark 1 add 2 roll cleartomark exit } ifelse } ifelse } loop end } { exch dup 0 eq { pop 0 get aload pop } { 0 exch ToUnitInterval exch dup 3 -1 roll Portion dup length 1 sub get aload pop } ifelse } ifelse } bind def % \end{macrocode} % \end{macro} % \begin{macro}{TraceCurveOrPath} % \begin{pssyntax} % \PSarray{curve} \PSvar{tstart tstop} \PSproc{drawcurve} % \PSop{TraceCurveOrPath} % \end{pssyntax} % \begin{macrocode} /TraceCurveOrPath { 4 1 roll UnifyInterval 3 -1 roll dup IsPath { 4 -1 roll pop 3 1 roll 2 copy gt { % \end{macrocode} % reverse the path, draw everything and resave the path % \begin{macrocode} ReverseInterval 3 -1 roll ReversePath 3 1 roll } if ShowPathPortion }{ % tstart tstop [curve] mark exch 4 2 roll % [ [curve] tstart tstop 2 copy gt { % tstart > tstop % \end{macrocode} % Exchange tstart and tstop and reverse the curve array % \begin{macrocode} exch [ 4 -1 roll ReverseCurve 3 1 roll % [ [curve'] tstart tstop } if ToUnitInterval exch dup 3 -1 roll Portion { aload pop } forall % \end{macrocode} % reverse the point order % \begin{macrocode} counttomark -2 4 { 2 roll } for counttomark 2 sub 2 idiv counttomark 2 add -1 roll exec } ifelse } bind def % \end{macrocode} % \end{macro} % % \begin{macrocode} % Graham Scal algorithm to compute the convex hull of a set of % points. Code written by Bill Casselman, % http://www.math.ubc.ca/~cass/graphics/text/www/ % % [[X1 Y1] [X2 Y2] ... [Xn Yn]] hull -> [[...] ... [...]] % /hulldict 32 dict def hulldict begin % u - v /vsub { 2 dict begin /v exch def /u exch def [ u 0 get v 0 get sub u 1 get v 1 get sub ] end } def % u - v rotated 90 degrees /vperp { 2 dict begin /v exch def /u exch def [ v 1 get u 1 get sub u 0 get v 0 get sub ] end } def /dot { 2 dict begin /v exch def /u exch def v 0 get u 0 get mul v 1 get u 1 get mul add end } def % P Q % tests whether P < Q in lexicographic order % i.e xP < xQ, or yP < yQ if xP = yP /comp { 2 dict begin /Q exch def /P exch def P 0 get Q 0 get lt P 0 get Q 0 get eq P 1 get Q 1 get lt and or end } def end % args: an array of points C % effect: returns the array of points on the boundary of % the convex hull of C, in clockwise order /ConvexHull { (ConvexHull) DebugBegin hulldict begin /C exch def /comp C quicksort /n C length def % Q might circle around to the start /Q n 1 add array def Q 0 C 0 get put Q 1 C 1 get put /i 2 def /k 2 def % i is next point in C to be looked at % k is next point in Q to be added % [ Q[0] Q[1] ... ] % scan the points to make the top hull n 2 sub { % P is the current point at right /P C i get def /i i 1 add def { % if k = 1 then just add P k 2 lt { exit } if % now k is 2 or more % look at Q[k-2] Q[k-1] P: a left turn (or in a line)? % yes if (P - Q[k-1])*(Q[k-1] - Q[k-2])^perp >= 0 P Q k 1 sub get vsub Q k 1 sub get Q k 2 sub get vperp dot 0 lt { % not a left turn exit } if /k k 1 sub def } loop Q k P put /k k 1 add def } repeat % done with top half % K is where the right hand point is /K k 1 sub def /i n 2 sub def Q k C i get put /i i 1 sub def /k k 1 add def n 2 sub { % P is the current point at right /P C i get def /i i 1 sub def { % in this pass k is always 2 or more k K 2 add lt { exit } if % look at Q[k-2] Q[k-1] P: a left turn (or in a line)? % yes if (P - Q[k-1])*(Q[k-1] - Q[k-2])^perp >= 0 P Q k 1 sub get vsub Q k 1 sub get Q k 2 sub get vperp dot 0 lt { % not a left turn exit } if /k k 1 sub def } loop Q k P put /k k 1 add def } repeat % strip Q down to [ Q[0] Q[1] ... Q[k-2] ] % excluding the doubled initial point [ 0 1 k 2 sub { Q exch get } for ] end DebugEnd } def /qsortdict 8 dict def qsortdict begin % args: /comp a L R x % effect: effects a partition into two pieces [L j] [i R] % leaves i j on stack /partition { 8 dict begin /x exch def /j exch def /i exch def /a exch def dup type /nametype eq { load } if /comp exch def { { a i get x comp exec not { exit } if /i i 1 add def } loop { x a j get comp exec not { exit } if /j j 1 sub def } loop i j le { % swap a[i] a[j] a j a i get a i a j get put put /i i 1 add def /j j 1 sub def } if i j gt { exit } if } loop i j end } def % args: /comp a L R % effect: sorts a[L .. R] according to comp /subsort { % /c a L R [ 3 1 roll ] 3 copy % /c a [L R] /c a [L R] aload aload pop % /c a [L R] /c a L R L R add 2 idiv % /c a [L R] /c a L R (L+R)/2 3 index exch get % /c a [L R] /c a L R x partition % /c a [L R] i j % if j > L subsort(a, L, j) dup % /c a [L R] i j j 3 index 0 get gt { % /c a [L R] i j 5 copy % /c a [L R] i j /c a [L R] i j exch pop % /c a [L R] i j /c a [L R] j exch 0 get exch % ... /c a L j subsort } if % /c a [L R] i j pop dup % /c a [L R] i i % if i < R subsort(a, i, R) 2 index 1 get lt { % /c a [L R] i exch 1 get % /c a i R subsort }{ 4 { pop } repeat } ifelse } def end % qsortdict % args: /comp a % effect: sorts the array a % comp returns truth of x < y for entries in a /quicksort { qsortdict begin dup length 1 gt { % /comp a dup % /comp a a length 1 sub % /comp a n-1 0 exch subsort } { pop pop } ifelse end } def % \end{macrocode} % % Debugging stuff % \begin{macrocode} /debug { dup 1 add copy {==} repeat pop } bind def /DebugIT false def /CheckIT false def /DebugDepth 0 def /DebugBegin { DebugIT { /DebugProcName exch def DebugDepth 2 mul string 0 1 DebugDepth 2 mul 1 sub { dup 2 mod 0 eq { (|) }{( )} ifelse 3 -1 roll dup 4 2 roll putinterval } for DebugProcName strcat == /DebugDepth DebugDepth 1 add def }{ pop } ifelse } bind def /DebugEnd { DebugIT { /DebugDepth DebugDepth 1 sub def DebugDepth 2 mul 2 add string 0 1 DebugDepth 2 mul 1 sub { dup 2 mod 0 eq { (|) }{ ( ) } ifelse 3 -1 roll dup 4 2 roll putinterval } for dup DebugDepth 2 mul (+-) putinterval ( done) strcat == } if } bind def /strcat { exch 2 copy length exch length add string dup dup 5 2 roll copy length exch putinterval } bind def /nametostr { dup length string cvs } bind def /ShowCurve { { aload pop } forall 8 -2 roll moveto curveto } bind def /CurveToString { (CurveToString) DebugBegin aload pop ([) 3 -1 roll 20 string cvs strcat (, ) strcat exch 20 string cvs strcat (]) strcat DebugEnd } bind def end % tx@IntersectDict % \end{macrocode} % % \Finale % \endinput