// Critical definitions for transform3 needed by projection and picture. pair viewportmargin=settings.viewportmargin; typedef real[][] transform3; restricted transform3 identity4=identity(4); // A uniform 3D scaling. transform3 scale3(real s) { transform3 t=identity(4); t[0][0]=t[1][1]=t[2][2]=s; return t; } // Simultaneous 3D scalings in the x, y, and z directions. transform3 scale(real x, real y, real z) { transform3 t=identity(4); t[0][0]=x; t[1][1]=y; t[2][2]=z; return t; } transform3 shiftless(transform3 t) { transform3 T=copy(t); T[0][3]=T[1][3]=T[2][3]=0; return T; } real camerafactor=2; // Factor used for camera adjustment. struct transformation { transform3 modelview; // For orientation and positioning transform3 projection; // For 3D to 2D projection bool infinity; void operator init(transform3 modelview) { this.modelview=modelview; this.projection=identity4; infinity=true; } void operator init(transform3 modelview, transform3 projection) { this.modelview=modelview; this.projection=projection; infinity=false; } transform3 compute() { return infinity ? modelview : projection*modelview; } transformation copy() { transformation T=new transformation; T.modelview=copy(modelview); T.projection=copy(projection); T.infinity=infinity; return T; } } struct projection { transform3 t; // projection*modelview (cached) bool infinity; bool absolute=false; triple camera; // Position of camera. triple up; // A vector that should be projected to direction (0,1). triple target; // Point where camera is looking at. triple normal; // Normal vector from target to projection plane. pair viewportshift; // Fractional viewport shift. real zoom=1; // Zoom factor. real angle; // Lens angle (for perspective projection). bool showtarget=true; // Expand bounding volume to include target? typedef transformation projector(triple camera, triple up, triple target); projector projector; bool autoadjust=true; // Adjust camera to lie outside bounding volume? bool center=false; // Center target within bounding volume? int ninterpolate; // Used for projecting nurbs to 2D Bezier curves. bool bboxonly=true; // Typeset label bounding box only. transformation T; void calculate() { T=projector(camera,up,target); t=T.compute(); infinity=T.infinity; ninterpolate=infinity ? 1 : 16; } triple vector() { return camera-target; } void operator init(triple camera, triple up=(0,0,1), triple target=(0,0,0), triple normal=camera-target, real zoom=1, real angle=0, pair viewportshift=0, bool showtarget=true, bool autoadjust=true, bool center=false, projector projector) { this.camera=camera; this.up=up; this.target=target; this.normal=normal; this.zoom=zoom; this.angle=angle; this.viewportshift=viewportshift; this.showtarget=showtarget; this.autoadjust=autoadjust; this.center=center; this.projector=projector; calculate(); } projection copy() { projection P=new projection; P.t=t; P.infinity=infinity; P.absolute=absolute; P.camera=camera; P.up=up; P.target=target; P.normal=normal; P.zoom=zoom; P.angle=angle; P.viewportshift=viewportshift; P.showtarget=showtarget; P.autoadjust=autoadjust; P.center=center; P.projector=projector; P.ninterpolate=ninterpolate; P.bboxonly=bboxonly; P.T=T.copy(); return P; } // Return the maximum distance of box(m,M) from target. real distance(triple m, triple M) { triple[] c={m,(m.x,m.y,M.z),(m.x,M.y,m.z),(m.x,M.y,M.z), (M.x,m.y,m.z),(M.x,m.y,M.z),(M.x,M.y,m.z),M}; return max(abs(c-target)); } // This is redefined here to make projection as self-contained as possible. static private real sqrtEpsilon = sqrt(realEpsilon); // Move the camera so that the box(m,M) rotated about target will always // lie in front of the clipping plane. bool adjust(triple m, triple M) { triple v=camera-target; real d=distance(m,M); static real lambda=camerafactor*(1-sqrtEpsilon); if(lambda*d >= abs(v)) { camera=target+camerafactor*d*unit(v); calculate(); return true; } return false; } } projection currentprojection; struct light { real[][] diffuse; real[][] specular; // For PRC only pen background=nullpen; // Background color of the 3D canvas. real specularfactor; triple[] position; // Only directional lights are currently implemented. transform3 T=identity(4); // Transform to apply to normal vectors. bool on() {return position.length > 0;} void operator init(pen[] diffuse, pen[] specular=diffuse, pen background=nullpen, real specularfactor=1, triple[] position) { int n=diffuse.length; assert(specular.length == n && position.length == n); this.diffuse=new real[n][]; this.specular=new real[n][]; this.background=background; this.position=new triple[n]; for(int i=0; i < position.length; ++i) { this.diffuse[i]=rgba(diffuse[i]); this.specular[i]=rgba(specular[i]); this.position[i]=unit(position[i]); } this.specularfactor=specularfactor; } void operator init(pen diffuse=white, pen specular=diffuse, pen background=nullpen, real specularfactor=1 ...triple[] position) { int n=position.length; operator init(array(n,diffuse),array(n,specular), background,specularfactor,position); } void operator init(pen diffuse=white, pen specular=diffuse, pen background=nullpen, real x, real y, real z) { operator init(diffuse,specular,background,(x,y,z)); } void operator init(explicit light light) { diffuse=copy(light.diffuse); specular=copy(light.specular); background=light.background; specularfactor=light.specularfactor; position=copy(light.position); } real[] background() {return rgba(background == nullpen ? white : background);} } light currentlight;