
1

MPlib
API documentation, version 2.00

Taco Hoekwater, September 2012 – Luigi Scarso, February 2018

2

1 Table of contents

1 Table of contents 2
2 Introduction 3
2.1 Simple MPlib use 3
2.2 Embedded MPlib use 3
3 C API for core MPlib 4
3.1 Structures 4
3.2 Function prototype typedefs 6
3.3 Enumerations 6
3.4 Functions 8
4 C API for path and knot manipulation 9
4.1 Enumerations 9
4.2 Structures 10
4.3 Functions for accessing knot data 10
4.4 Functions for creating and modifying knot data 12
4.5 Example usage 14
5 C API for graphical backend functions 19
5.1 Structures 19
5.2 Functions 22
6 C API for label generation (a.k.a. makempx) 23
6.1 Structures 23
6.2 Function prototype typedefs 23
6.3 Enumerations 23
6.4 Functions 24
7 Lua API 25
7.1 mplib.version 25
7.2 mplib.new 25
7.3 mp:statistics 25
7.4 mp:execute 26
7.5 mp:finish 26
7.6 Result table 26
7.7 Subsidiary table formats 28
7.8 Character size information 29
7.9 Solving path control points 30

3

2 Introduction
This document describes the API to MPlib, allowing you to use MPlib in your own applications.
One such application is writing bindings to interface with other programming languages. The
bindings to the Lua scripting language is part of the MPlib distribution and also covered by this
manual.
This is a first draft of both this document as well as the API, so there may be errors or omissions
in this document or strangenesses in the API. If you believe something can be improved, please do
not hesitate to let us know. The contact email address is metapost@tug.org.
The C paragraphs in this document assume you understand C code, the Lua paragraphs assume
you understand Lua code, and familiarity with MetaPost is assumed throughout.

2.1 Simple MPlib use
There are two different approaches possible when running MPlib. The first method is most suitable
for programs that function as a command-line frontend. It uses ‘normal’ MetaPost interface with
I/O to and from files, and needs very little setup to run. On the other hand, it also gives almost
no chance to control the MPlib behaviour.
Here is a C language example of how to do this:

#include "mplib.h"
int main (int argc, char **argv) {
MP mp;
MP_options *opt = mp_options();
opt->command_line = argv[1];
mp = mp_initialize(opt);
if (mp) {
int history = mp_run(mp);
mp_finish(mp);
exit (history);

} else {
exit (EXIT_FAILURE);

}
}

This example will run in ‘inimpost’ mode. See below for how to preload a macro package.

2.2 Embedded MPlib use
The second method does not run a file, but instead repeatedly executes chunks of MetaPost
language input that are passed to the library as strings, with the output redirected to internal
buffers instead of directly to files.
Here is an example of how this second approach works, now using the Lua bindings:

local mplib = require(’mplib’)
local mp = mplib.new ({ ini_version = false,

mem_name = ’plain’ })
if mp then
local l = mp:execute([[beginfig(1);

fill fullcircle scaled 20;

4

endfig;
]])

if l and l.fig and l.fig[1] then
print (l.fig[1]:postscript())

end
mp:finish();

end

This example preloads the ‘plain’ macro file.

3 C API for core MPlib

All of the types, structures, enumerations and functions that are described in this section are
defined in the header file mplib.h.

3.1 Structures

3.1.1 MP_options

This is a structure that contains the configurable parameters for a new MPlib instance. Because
MetaPost differentiates between -ini and non-ini modes, there are three types of settings: Those
that apply in both cases, and those that apply in only one of those cases.

int ini_version 1 set this to zero if you want to load a mem
file.

int error_line 79 maximal length of error message lines
int half_error_line 50 halfway break point for error contexts
int max_print_line 100 maximal length of file output
void * userdata NULL for your personal use only, not used by the

library
char * banner NULL string to use instead of default banner
int print_found_names 0 controls whether the asked name or the ac-

tual found name of the file is used in mes-
sages

int file_line_error_style 0 when this option is nonzero, the library
will use file:line:error style formatting
for error messages that occur while reading
from input files

char * command_line NULL input file name and rest of command line;
only used by mp_run interface

int interaction 0 explicit mp_interaction_mode (see below)
int noninteractive 0 set this nonzero to suppress user inter-

action, only sensible if you want to use
mp_execute

int random_seed 0 set this nonzero to force a specific random
seed

int troff_mode 0 set this nonzero to initialize ‘troffmode’

5

char * mem_name NULL explicit mem name to use instead of plain.mem
. ignored in -ini mode.

char * job_name NULL explicit job name to use instead of first in-
put file

mp_file_finder find_file NULL function called for finding files
mp_editor_cmd run_editor NULL function called after ‘E’ error response
mp_makempx_cmd run_make_mpx NULL function called for the creation of mpx files
int math_mode 0 set this to mp_math_double_mode to use

doubles instead of scaled (mp_math_scaled_mode
) values

To create an MP_options structure, you have to use the mp_options() function.

3.1.2 MP

This type is an opaque pointer to a MPlib instance, it is what you have pass along as the first
argument to (almost) all the MPlib functions. The actual C structure it points to has hundreds of
fields, but you should not use any of those directly. All configuration is done via the MP_options
structure, and there are accessor functions for the fields that can be read out.

3.1.3 mp_run_data

When the MPlib instance is not interactive, any output is redirected to this structure. There are
a few string output streams, and a linked list of output images.

mp_stream term_out holds the terminal output
mp_stream error_out holds error messages
mp_stream log_out holds the log output
mp_stream ship_out holds the exported EPS, SVG or PNG string
mp_edge_object * edges linked list of generated pictures

term_out is equivalent to stdout in interactive use, and error_out is equivalent to stderr. The
error_out is currently only used for memory allocation errors, the MetaPost error messages are
written to term_out (and are often duplicated to log_out as well).
You need to include at least mplibps.h to be able to actually make use of this list of images, see
the next section for the details on mp_edge_object lists.
See next paragraph for mp_stream.

3.1.4 mp_stream

This contains the data for a stream as well as some internal bookkeeping variables. The fields that
are of interest to you are:

size_t size the internal buffer size
char * data the actual data.

There is nothing in the stream unless the size field is nonzero. There will not be embedded null
characters (\0) in data except when ship_out is used for PNG output.
If size is nonzero, strlen(data) is guaranteed to be less than that, and may be as low as zero
(if MPlib has written an empty string).

6

3.2 Function prototype typedefs

The following three function prototypes define functions that you can pass to MPlib inside the
MP_options structure.

3.2.1 char * (*mp_file_finder) (MP, const char*, const char*, int)

MPlib calls this function whenever it needs to find a file. If you do not set up the matching option
field (MP_options.find_file), MPlib will only be able to find files in the current directory.
The three function arguments are the requested file name, the file mode (either "r" or "w"), and
the file type (an mp_filetype, see below).
The return value is a new string indicating the disk file name to be used, or NULL if the named
file can not be found. If the mode is "w", it is usually best to simply return a copy of the first
argument.

3.2.2 void (*mp_editor_cmd)(MP, char*, int)

This function is executed when a user has pressed ‘E’ as reply to an MetaPost error, so it will only
ever be called when MPlib in interactive mode. The function arguments are the file name and the
line number. When this function is called, any open files are already closed.

3.2.3 int (*mp_makempx_cmd)(MP, char*, char *)

This function is executed when there is a need to start generating an mpx file because (the first
time a btex command was encountered in the current input file).
The first argument is the input file name. This is the name that was given in the MetaPost
language, so it may not be the same as the name of the actual file that is being used, depending on
how your mp_file_finder function behaves. The second argument is the requested output name
for mpx commands.
A zero return value indicates success, everything else indicates failure to create a proper mpx file
and will result in an MetaPost error.

3.3 Enumerations

3.3.1 mp_filetype

The mp_file_finder receives an int argument that is one of the following types:

mp_filetype_program Metapost language code (r)
mp_filetype_log Log output (w)
mp_filetype_postscript PostScript or SVG output (w)
mp_filetype_bitmap PNG output (w)
mp_filetype_metrics TEX font metric file (r+w)
mp_filetype_fontmap Font map file (r)
mp_filetype_font Font PFB file (r)
mp_filetype_encoding Font encoding file (r)
mp_filetype_text readfrom and write files (r+w)

7

3.3.2 mp_interaction_mode

When noninteractive is zero, MPlib normally starts in a mode where it reports every error, stops
and asks the user for input. This initial mode can be overruled by using one of the following:

mp_batch_mode as with batchmode
mp_nonstop_mode as with nonstopmode
mp_scroll_mode as with scrollmode
mp_error_stop_mode as with errorstopmode

3.3.3 mp_math_mode

mp_math_scaled_mode uses scaled point data for numerical values
mp_math_double_mode uses IEEE double floating point data for numerical values
mp_math_binary_mode not used yet.
mp_math_decimal_mode not used yet.

3.3.4 mp_history_state

These are set depending on the current state of the interpreter.

mp_spotless still clean as a whistle
mp_warning_issued a warning was issued or something was show-ed
mp_error_message_issued an error has been reported
mp_fatal_eror_stop termination was premature due to error(s)
mp_system_error_stop termination was premature due to disaster (out of system memory)

3.3.5 mp_color_model

Graphical objects always have a color model attached to them.

mp_no_model as with withoutcolor
mp_grey_model as with withgreycolor
mp_rgb_model as with withrgbcolor
mp_cmyk_model as with withcmykcolor

3.3.6 mp_graphical_object_code

There are eight different graphical object types.

mp_fill_code addto contour
mp_stroked_code addto doublepath
mp_text_code addto also (via infont)
mp_start_clip_code clip
mp_start_bounds_code
mp_stop_clip_code setbounds
mp_stop_bounds_code
mp_special_code special

8

3.4 Functions

3.4.1 char * mp_metapost_version(void)

Returns a copy of the MPlib version string.

3.4.2 MP_options * mp_options(void)

Returns a properly initialized option structure, or NULL in case of allocation errors.

3.4.3 MP mp_initialize(MP_options *opt)

Returns a pointer to a new MPlib instance, or NULL if initialisation failed.
String options are copied, so you can free any of those (and the opt structure) immediately after
the call to this function.

3.4.4 int mp_status(MP mp)

Returns the current value of the interpreter error state, as a mp_history_state. This function is
useful after mp_initialize.

3.4.5 boolean mp_finished(MP mp)

Returns the current value of mp->finished. This function is useful to check if mp_execute will
execute the string, because if mp->finished is true it will return after resetting the streams.

3.4.6 int mp_run(MP mp)

Runs the MPlib instance using the command_line and other items from the MP_options. After
the call to mp_run, the MPlib instance should be closed off by calling mp_finish.
The return value is the current mp_history_state

3.4.7 void * mp_userdata(MP mp)

Simply returns the pointer that was passed along as userdata in the MP_options struct.

3.4.8 int mp_troff_mode(MP mp)

Returns the value of troff_mode as copied from the MP_options struct.

3.4.9 mp_run_data * mp_rundata(MP mp)

Returns the information collected during the previous call to mp_execute.

9

3.4.10 int mp_execute(MP mp, char *s, size_t l)

Executes string s with length l in the MPlib instance. This call can be repeated as often as is
needed. The return value is the current mp_history_state. To get at the produced results, call
mp_rundata.

3.4.11 void mp_finish(MP mp)

This finishes off the use of the MPlib instance: it closes all files and frees all the memory allocated
by this instance.

3.4.12 double mp_get_char_dimension(MP mp,char*fname,int n,int t)

This is a helper function that returns one of the dimensions of glyph n in font fname as a double in
PostScript (AFM) units. The requested item t can be ’w’ (width), ’h’ (height), or ’d’ (depth).

3.4.13 int mp_memory_usage(MP mp)

Returns the current memory usage of this instance.

3.4.14 int mp_hash_usage(MP mp)

Returns the current hash usage of this instance.

3.4.15 int mp_param_usage(MP mp)

Returns the current simultaneous macro parameter usage of this instance.

3.4.16 int mp_open_usage(MP mp)

Returns the current input levels of this instance.

4 C API for path and knot manipulation

4.1 Enumerations

4.1.1 mp_knot_type

Knots can have left and right types depending on their current status. By the time you see them
in the output, they are usually either mp_explicit or mp_endpoint, but here is the full list:

mp_endpoint
mp_explicit
mp_given
mp_curl

10

mp_open
mp_end_cycle

4.1.2 mp_knot_originator

Knots can originate from two sources: they can be explicitly given by the user, or they can be
created by the MPlib program code (for example as result of the makepath operator).

mp_program_code
mp_metapost_user

4.2 Structures

4.2.1 mp_number

Numerical values are represented by opaque structure pointers named mp_number.

4.2.2 mp_knot

Each MPlib path (a sequence of MetaPost points) is represented as a linked list of structure pointers
of the type mp_knot.

mp_knot next the next knot, or NULL
mp_knot_type data.types.left_type the mp_knot_type for the left side
mp_knot_type data.types.right_type the mp_knot_type for the right side
mp_number x_coord x
mp_number y_coord y
mp_number left_x x of the left (incoming) control point
mp_number left_y y of the left (incoming) control point
mp_number right_x x of the right (outgoing) control point
mp_number right_y y of the right (outgoing) control point
mp_knot_originator originator the mp_knot_originator

Paths are always represented as a circular list. The difference between cyclic and non-cyclic paths
is indicated by their mp_knot_type.
While the fields of the knot structure are in fact accessible, it is better to use the access functions
below as the internal structure tends to change.

4.3 Functions for accessing knot data

4.3.1 mp_number mp_knot_x_coord(MP mp,mp_knot p)

Access the x coordinate of the knot.

4.3.2 mp_number mp_knot_y_coord(MP mp,mp_knot p)

Access the y coordinate of the knot.

11

4.3.3 mp_number mp_knot_left_x(MP mp,mp_knot p)

Access the x coordinate of the left control point of the knot.

4.3.4 mp_number mp_knot_left_y(MP mp,mp_knot p)

Access the y coordinate of the left control point of the knot.

4.3.5 mp_number mp_knot_right_x(MP mp,mp_knot p)

Access the x coordinate of the right control point of the knot.

4.3.6 mp_number mp_knot_right_y(MP mp,mp_knot p)

Access the y coordinate of the right control point of the knot.

4.3.7 int mp_knot_left_type(MP mp,mp_knot p)

Access the type of the knot on the left side.

4.3.8 int mp_knot_right_type(MP mp,mp_knot p)

Access the type of the knot on the right side.

4.3.9 mp_knot mp_knot_next(MP mp,mp_knot p)

Access the pointer to the next knot.

4.3.10 mp_number mp_knot_left_curl(MP mp,mp_knot p)

Access the left curl of the knot (applies to unresolved knots, see below).

4.3.11 mp_number mp_knot_left_given(MP mp,mp_knot p)

Access the left given value of the knot (applies to unresolved knots, see below).

4.3.12 mp_number mp_knot_left_tension(MP mp,mp_knot p)

Access the left tension of the knot (applies to unresolved knots, see below).

4.3.13 mp_number mp_knot_right_curl(MP mp,mp_knot p)

Access the right curl value of the knot (applies to unresolved knots, see below).

4.3.14 mp_number mp_knot_right_given(MP mp,mp_knot p)

Access the right given value of the knot (applies to unresolved knots, see below).

12

4.3.15 mp_number mp_knot_right_tension(MP mp,mp_knot p)

Access the right tension value of the knot (applies to unresolved knots, see below).

4.3.16 double mp_number_as_double(MP mp,mp_number n)

Converts an mp_number to double.

4.4 Functions for creating and modifying knot data

4.4.1 mp_knot mp_create_knot(MP mp)

Allocates and returns a new knot. Returns NULL on (malloc) failure.

4.4.2 int mp_set_knot(MP mp,mp_knot p,double x,double y)

Fills in the coordinate of knot p. x1 and y1 values should be within the proper range for the
current numerical mode. Return 1 on success, 0 on failure.

4.4.3 int mp_close_path(MP mp,mp_knot p,mp_knot q)

Connects p and q using an ‘endpoint join’, where p is the last knot of the path, and q is the first
knot. The right tension of p and the left tension of q are (re)set to the default of 1.0.
Because all knot list data structures are always circular, this is needed to end the path properly
even if the path is not intended cyclic (or use mp_close_path_cycle(), if it is indeed a cycle).
Return 1 on success, 0 on failure.

4.4.4 int mp_close_path_cycle(MP mp,mp_knot p,mp_knot q)

Connects p and q using an ‘open join’, where p is the last knot of the path, and q is the first knot.
The right tension of p and the left tension of q are (re)set to the default of 1.0.
This is needed to mimic metapost’s cycle. return 1 on success, 0 on failure.

4.4.5 mp_knot mp_append_knot(MP mp,mp_knot p,double x,double y)

Appends a knot to previous knot q, and returns the new knot. This is a convenience method
combining mp_create_knot(), mp_set_knot(), and (if q is not NULL) mp_close_path_cycle().
Returns NULL on failure.

4.4.6 int mp_set_knot_left_curl(MP mp,mp_knot q,double value)

Sets the left curl value for a knot. fabs(value) should be less than 4096.0 return 1 on success, 0
on failure.

13

4.4.7 int mp_set_knot_right_curl(MP mp,mp_knot q,double value)

Sets the right curl value for a knot. fabs(value) should be less than 4096.0 return 1 on success,
0 on failure.

4.4.8 int mp_set_knot_curl(MP mp,mp_knot q,double value)

Sets the curl value for a knot. fabs(value) should be less than 4096.0 return 1 on success, 0 on
failure.

4.4.9 int mp_set_knotpair_curls(MP mp,mp_knot p,mp_knot q,double t1,double
t2)

A convenience method that calls mp_set_knot_curl(mp,p,t1) and mp_set_knot_curl(mp,q,t2)
return 1 if both succeed, 0 otherwise.

4.4.10 int mp_set_knot_direction(MP mp,mp_knot q,double x,double y)

Sets the direction {x,y} value for a knot. fabs(x) and fabs(y) should be less than 4096.0 return
1 on success, 0 on failure.

4.4.11 int mp_set_knotpair_directions(MP mp,mp_knot p,mp_knot q,double
x1,double y1,double x2,double y2)

A convenience method that calls mp_set_knot_direction(mp,p,x1,y1) and mp_set_knot_direction(mp,p,x2,y2)
return 1 if both succeed, 0 otherwise.

4.4.12 int mp_set_knotpair_tensions(MP mp,mp_knot p,mp_knot q,double t1,double
t2)

Sets the tension specifiers for a pair of connected knots. fabs(t1) and fabs(t2) should be more
than 0.75 and less than 4096.0 return 1 on success, 0 on failure.

4.4.13 int mp_set_knot_left_tension(MP mp, mp_knot p, double t1)

Set the left tension of a knot. fabs(t1) should be more than 0.75 and less than 4096.0 return 1
on success, 0 on failure.

4.4.14 int mp_set_knot_right_tension(MP mp, mp_knot p, double t1)

Set the right tension of a knot. fabs(t1) should be more than 0.75 and less than 4096.0 return 1
on success, 0 on failure.

4.4.15 int mp_set_knot_left_control(MP mp, mp_knot p, double x1, double
y1)

14

4.4.16 int mp_set_knot_right_control(MP mp, mp_knot p, double x1, double
y1)

Sets explicit left or right control for a knot. x1 and y1 values should be within the proper range
for the current numerical mode. return 1 on success, 0 on failure.

4.4.17 int mp_set_knotpair_controls(MP mp,mp_knot p,mp_knot q,double x1,double
y1,double x2,double y2)

Sets explicit controls for a knot pair. All four x and y values should be within the proper range
for the current numerical mode. return 1 on success, 0 on failure.

4.4.18 int mp_solve_path(MP mp,mp_knot first)

Finds explicit controls for the knot list at first, which is changed in-situ. Returns 0 if there was
any kind of error, in which case first is unmodified. There can be quite a set of potential errors,
mostly harmless processing errors. However, be aware that it is also possible that there are internal
mplib memory allocation errors. A distinction between those can not be made at the moment.
Return 1 on success, 0 on failure.

4.4.19 void mp_free_path(MP mp,mp_knot p)

Frees the memory of a path.

4.5 Example usage

Since the above function list is quite dry and not that easy to grasp, here are two examples of how
to use it. First a simple example (mp_dump_path() code is given below).

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mplib.h"

int main (int argc, char ** argv) {
MP mp ;
mp_knot p, first, q;
MP_options * opt = mp_options () ;
opt -> command_line = NULL;
opt -> noninteractive = 1 ;
mp = mp_initialize (opt) ;
if (! mp) exit (EXIT_FAILURE) ;

/* Equivalent Metapost code:

path p;
p := (0,0)..(10,10)..(10,-5)..cycle;

15

*/
first = p = mp_append_knot(mp,NULL,0,0);
if (! p) exit (EXIT_FAILURE) ;
q = mp_append_knot(mp,p,10,10);
if (! q) exit (EXIT_FAILURE) ;
p = mp_append_knot(mp,q,10,-5);
if (! p) exit (EXIT_FAILURE) ;
mp_close_path_cycle(mp, p, first);
/* mp_dump_path(mp, first); */
if (mp_solve_path(mp, first)) {

/* mp_dump_path(mp, first); */
}
mp_free_path(mp, first);
mp_finish (mp) ;
free(opt);
return 0;

}

For some more challenging path input, here is a more elaborate example of the path processing
code:

/* Equivalent Metapost code:

path p;
p := (0,0)..

(2,20)--
(10, 5)..controls (2,2) and (9,4.5)..
(3,10)..tension 3 and atleast 4 ..
(1,14){2,0} .. {0,1}(5,-4);

*/
first = p = mp_append_knot(mp,NULL,0,0);
q = mp_append_knot(mp,p,2,20);
p = mp_append_knot(mp,q,10,5);
if (!mp_set_knotpair_curls(mp, q,p, 1.0, 1.0))
exit (EXIT_FAILURE) ;

q = mp_append_knot(mp,p,3,10);
if (!mp_set_knotpair_controls(mp, p,q, 2.0, 2.0, 9.0, 4.5))
exit (EXIT_FAILURE) ;

p = mp_append_knot(mp,q,1,14);
if (!mp_set_knotpair_tensions(mp,q,p, 3.0, -4.0))
exit (EXIT_FAILURE) ;

q = mp_append_knot(mp,p,5,-4);
if (!mp_set_knotpair_directions(mp, p,q, 2.0, 0.0, 0.0, 1.0))
exit (EXIT_FAILURE) ;

mp_close_path(mp, q, first);

/* mp_dump_path(mp, first); */
if (mp_solve_path(mp, first)) {

/* mp_dump_path(mp, first); */

16

}
mp_free_path(mp, first);

And here is the source code for the mp_dump_path function, which produces path output that is
similar to Metapost’s tracingchoices report.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mplib.h"

#define ROUNDED_ZERO(v) (fabs((v))<0.00001 ? 0 : (v))
#define PI 3.1415926535897932384626433832795028841971
#define RADIANS(a) (mp_number_as_double(mp,(a)) / 16.0) * PI/180.0

void mp_dump_path (MP mp, mp_knot h) {
mp_knot p, q;
if (h == NULL) return;
p = h;
do {
q=mp_knot_next(mp,p);
if ((p==NULL)||(q==NULL)) {
printf("\n???");
return; /* this won’t happen */

}
printf ("(%g,%g)", mp_number_as_double(mp,mp_knot_x_coord(mp,p)),

mp_number_as_double(mp,mp_knot_y_coord(mp,p)));
switch (mp_knot_right_type(mp,p)) {
case mp_endpoint:
if (mp_knot_left_type(mp,p)==mp_open) printf("{open?}");
if ((mp_knot_left_type(mp,q)!=mp_endpoint)||(q!=h))
q=NULL; /* force an error */

goto DONE;
break;

case mp_explicit:
printf ("..controls (%g,%g)",

mp_number_as_double(mp,mp_knot_right_x(mp,p)),
mp_number_as_double(mp,mp_knot_right_y(mp,p)));

printf(" and ");
if (mp_knot_left_type(mp,q)!=mp_explicit) {
printf("??");

} else {
printf ("(%g,%g)",mp_number_as_double(mp,mp_knot_left_x(mp,q)),

mp_number_as_double(mp,mp_knot_left_y(mp,q)));
}
goto DONE;
break;

case mp_open:
if ((mp_knot_left_type(mp,p)!=mp_explicit)

17

&&
(mp_knot_left_type(mp,p)!=mp_open)) {

printf("{open?}");
}
break;

case mp_curl:
case mp_given:
if (mp_knot_left_type(mp,p)==mp_open)
printf("??");

if (mp_knot_right_type(mp,p)==mp_curl) {
printf("{curl %g}", mp_number_as_double(mp,mp_knot_right_curl(mp,p)));

} else {
double rad = RADIANS(mp_knot_right_curl(mp,p));
double n_cos = ROUNDED_ZERO(cos(rad)*4096);
double n_sin = ROUNDED_ZERO(sin(rad)*4096);
printf("{%g,%g}", n_cos, n_sin);

}
break;

}
if (mp_knot_left_type(mp,q)<=mp_explicit) {
printf("..control?"); /* can’t happen */

} else if ((mp_number_as_double(mp,mp_knot_right_tension(mp,p))!=(1.0))||
(mp_number_as_double(mp,mp_knot_left_tension(mp,q)) !=(1.0))) {

printf("..tension ");
if (mp_number_as_double(mp,mp_knot_right_tension(mp,p))<0.0)
printf("atleast ");

printf("%g", fabs(mp_number_as_double(mp,mp_knot_right_tension(mp,p))));
if (mp_number_as_double(mp,mp_knot_right_tension(mp,p)) !=

mp_number_as_double(mp,mp_knot_left_tension(mp,q))) {
printf(" and ");
if (mp_number_as_double(mp,mp_knot_left_tension(mp,q))< 0.0)
printf("atleast ");

printf("%g", fabs(mp_number_as_double(mp,mp_knot_left_tension(mp,q))));
}

}
DONE:
p=q;
if (p!=h || mp_knot_left_type(mp,h)!=mp_endpoint) {
printf ("\n ..");
if (mp_knot_left_type(mp,p) == mp_given) {
double rad = RADIANS(mp_knot_left_curl(mp,p));
double n_cos = ROUNDED_ZERO(cos(rad)*4096);
double n_sin = ROUNDED_ZERO(sin(rad)*4096);
printf("{%g,%g}", n_cos, n_sin);

} else if (mp_knot_left_type(mp,p) ==mp_curl){
printf("{curl %g}", mp_number_as_double(mp,mp_knot_left_curl(mp,p)));

}
}

} while (p!=h);

18

if (mp_knot_left_type(mp,h)!=mp_endpoint)
printf("cycle");

printf (";\n");
}

The above function is much complicated because of all the knot type cases that can only happen
before mp_solve_path() is called. A version that only prints processed paths and is less scared of
using direct field access would be much shorter:

void mp_dump_solved_path (MP mp, mp_knot h) {
mp_knot p, q;
if (h == NULL) return;
p = h;
do {

q=mp_knot_next(mp,p);
printf ("(%g,%g)..controls (%g,%g) and (%g,%g)",

mp_number_as_double(mp,p->x_coord),
mp_number_as_double(mp,p->y_coord),
mp_number_as_double(mp,p->right_x),
mp_number_as_double(mp,p->right_y),
mp_number_as_double(mp,q->left_x),
mp_number_as_double(mp,q->left_y));

p=q;
if (p!=h || h->data.types.left_type!=mp_endpoint) {

printf ("\n ..");
}

} while (p!=h);
if (h->data.types.left_type!=mp_endpoint)

printf("cycle");
printf (";\n");

}

19

5 C API for graphical backend functions

These are all defined in mplibps.h

5.1 Structures

The structures in this section are used by the items in the body of the edges field of an mp_rundata
structure. They are presented here in a bottom-up manner.

5.1.1 mp_gr_knot

These are like mp_knot, except that all mp_number values have been simplified to double.

5.1.2 mp_color

The graphical object that can be colored, have two fields to define the color: one for the color
model and one for the color values. The structure for the color values is defined as follows:

double a_val see below
double b_val –
double c_val –
double d_val –

All graphical objects that have mp_color fields also have mp_color_model fields. The color model
decides the meaning of the four data fields:

color model value a_val b_val c_val d_val
mp_no_model – – – –
mp_grey_model grey – – –
mp_rgb_model red green blue
mp_cmyk_model cyan magenta yellow black

5.1.3 mp_dash_object

Dash lists are represented like this:

double * array an array of dash lengths, terminated by −1.
double offset the dash array offset (as in PostScript)

5.1.4 mp_graphic_object

Now follow the structure definitions of the objects that can appear inside a figure (this is called an
‘edge structure’ in the internal WEB documentation).
There are eight different graphical object types, but there are seven different C structures. Type
mp_graphic_object represents the base line of graphical object types. It has only two fields:

mp_graphical_object_code type
struct mp_graphic_object * next next object or NULL

20

Because every graphical object has at least these two fields, the body of a picture is represented as
a linked list of mp_graphic_object items. Each object in turn can then be typecast to the proper
type depending on its type.
The two ‘missing’ objects in the explanations below are the ones that match mp_stop_clip_code
and mp_stop_bounds_code: these have no extra fields besides type and next.

5.1.5 mp_fill_object

Contains the following fields on top of the ones defined by mp_graphic_object:

char * pre_script this is the result of withprescript
char * post_script this is the result of withpostscript
mp_color color the color value of this object
mp_color_model color_model the color model
unsigned char ljoin the line join style; values have the same meaning as in Post-

Script: 0 for mitered, 1 for round, 2 for beveled.
mp_gr_knot path_p the (always cyclic) path
mp_gr_knot htap_p a possible reversed path (see below)
mp_gr_knot pen_p a possible pen (see below)
double miterlim the miter limit

Even though this object is called an mp_fill_object, it can be the result of both fill and
filldraw in the MetaPost input. This means that there can be a pen involved as well. The final
output should behave as follows:

• If there is no pen_p; simply fill path_p.

• If there is a one-knot pen (pen_p->next = pen_p) then fill path_p and also draw path_p with
the pen_p. Do not forget to take ljoin and miterlim into account when drawing with the
pen.

• If there is a more complex pen (pen_p->next != pen_p) then its path has already been pre-
processed for you: path_p and htap_p already incorporate its shape.

5.1.6 mp_stroked_object

Contains the following fields on top of the ones defined by mp_graphic_object:

char * pre_script this is the result of withprescript
char * post_script this is the result of withpostscript
mp_color color color value
mp_color_model color_model color model
unsigned char ljoin the line join style
unsigned char lcap the line cap style; values have the same meaning as in Post-

Script: 0 for butt ends, 1 for round ends, 2 for projecting
ends.

mp_gr_knot path_p the path
mp_gr_knot pen_p the pen
double miterlim miter limit
mp_dash_object * dash_p a possible dash list

21

5.1.7 mp_text_object

Contains the following fields on top of the ones defined by mp_graphic_object:

char * pre_script this is the result of withprescript
char * post_script this is the result of withpostscript
mp_color color color value
mp_color_model color_model color model
char * text_p string to be placed
char * font_name the MetaPost font name
double font_dsize size of the font
double width width of the picture resulting from the string
double height height
double depth depth
double tx transformation component
double ty transformation component
double txx transformation component
double tyx transformation component
double txy transformation component
double tyy transformation component

All fonts are loaded by MPlib at the design size (but not all fonts have the same design size). If
text is to be scaled, this happens via the transformation components.

5.1.8 mp_clip_object

Contains the following field on top of the ones defined by mp_graphic_object:

mp_gr_knot path_p defines the clipping path that is in effect until the object with the match-
ing mp_stop_clip_code is encountered

5.1.9 mp_bounds_object

Contains the following field on top of the ones defined by mp_graphic_object:

mp_gr_knot path_p the path that was used for boundary calculation

This object can be ignored when output is generated, it only has effect on the boudingbox of the
following objects and that has been taken into account already.

5.1.10 mp_special_object

This represents the output generated by a MetaPost special command. It contains the following
field on top of the ones defined by mp_graphic_object:

char * pre_script the special string

Each special command generates one object. All of the relevant mp_special_objects for a figure
are linked together at the start of that figure.

22

5.1.11 mp_edge_object

mp_edge_object * next points to the next figure (or NULL)
mp_graphic_object * body a linked list of objects in this figure
char * filename this would have been the used filename if a PostScript file would

have been generated
MP parent a pointer to the instance that created this figure
double minx lower-left x of the bounding box
double miny lower-left y of the bounding box
double maxx upper right x of the bounding box
double maxy upper right y of the bounding box
double width value of charwd; this would become the tfm width (but with-

out the potential rounding correction for tfm file format)
double height similar for height (charht)
double depth similar for depth (chardp)
double ital_corr similar for italic correction (charic)
int charcode Value of charcode (rounded, but not modulated for tfm’s 256

values yet)

5.2 Functions

5.2.1 int mp_ps_ship_out(mp_edge_object*hh,int prologues,int procset)

If you have an mp_edge_object, you can call this function. It will generate the PostScript output
for the figure and save it internally. A subsequent call to mp_rundata will find the generated text
in the ship_out field.
Returns zero for success.

5.2.2 int mp_svg_ship_out(mp_edge_object*hh,int prologues)

If you have an mp_edge_object, you can call this function. It will generate the SVG output for
the figure and save it internally. A subsequent call to mp_rundata will find the generated text in
the ship_out field.
Returns zero for success.

5.2.3 int mp_png_ship_out(mp_edge_object*hh, char *options)

If you have an mp_edge_object, you can call this function. It will generate the PNG bitmap for
the figure and save it internally. A subsequent call to mp_rundata will find the generated data in
the ship_out field.
Note: the options structure follows the same syntax as in the Metapost language, and can be
NULL.
Returns zero for success.

5.2.4 void mp_gr_toss_objects(mp_edge_object*hh)

This frees a single mp_edge_object and its mp_graphic_object contents.

23

5.2.5 void mp_gr_toss_object(mp_graphic_object*p)

This frees a single mp_graphic_object object.

5.2.6 mp_graphic_object * mp_gr_copy_object(MP mp,mp_graphic_object*p)

This creates a deep copy of a mp_graphic_object object.

6 C API for label generation (a.k.a. makempx)

The following are all defined in mpxout.h.

6.1 Structures

6.1.1 MPX

An opaque pointer that is passed on to the file_finder.

6.1.2 mpx_options

This structure holds the option fields for mpx generation. You have to fill in all fields except
mptexpre, that one defaults to mptexpre.tex

mpx_modes mode
char * cmd the command (or sequence of commands) to run
char * mptexpre prepended to the generated TEX file
char * mpname input file name
char * mpxname output file name
char * banner string to be printed to the generated to-be-typeset file
int debug When nonzero, mp_makempx outputs some debug information and

do not delete temp files
mpx_file_finder find_file

6.2 Function prototype typedefs

6.2.1 char * (*mpx_file_finder) (MPX, const char*, const char*, int)

The return value is a new string indicating the disk file to be used. The arguments are the file
name, the file mode (either "r" or "w"), and the file type (an mpx_filetype, see below). If the
mode is "w", it is usually best to simply return a copy of the first argument.

6.3 Enumerations

6.3.1 mpx_modes

mpx_tex_mode
mpx_troff_mode

24

6.3.2 mpx_filetype

mpx_tfm_format TEX or Troff ffont metric file
mpx_vf_format TEX virtual font file
mpx_trfontmap_format Troff font map
mpx_trcharadj_format Troff character shift information
mpx_desc_format Troff DESC file
mpx_fontdesc_format Troff FONTDESC file
mpx_specchar_format Troff special character definition

6.4 Functions

6.4.1 int mpx_makempx(mpx_options *mpxopt)

A return value of zero is success, non-zero values indicate errors.

25

7 Lua API

The MetaPost library interface registers itself in the table mplib.

7.1 mplib.version

Returns the MPlib version.

<string> s = mplib.version()

7.2 mplib.new

To create a new metapost instance, call

<mpinstance> mp = mplib.new({...})

This creates the mp instance object. The mp instance object always starts out in so-called ‘inimp’
mode, there is no support for preload files.
The argument hash can have a number of different fields, as follows:

name type description default
error_line number error line width 79
print_line number line length in ps output 100
random_seed number the initial random seed variable
interaction string the interaction mode, one of batch errorstop

, nonstop, scroll, errorstop
job_name string –jobname mpout
math_mode string the number system mode, one of scaled

scaled or double
find_file function a function to find files only local files

The find_file function should be of this form:

<string> found = finder (<string> name, <string> mode, <string> type)

with:

name the requested file

mode the file mode: r or w

type the kind of file, one of: mp, tfm, map, pfb, enc

Return either the full pathname of the found file, or nil if the file cannot be found.

7.3 mp:statistics

You can request statistics with:

<table> stats = mp:statistics()

26

This function returns the allocation statistics for an MPlib instance. There are four fields, giving
the maximum number of used items in each of four object classes:

memory number allocated memory (in bytes)
hash number hash size (in entries)
params number simultaneous macro parameters
open number input file nesting levels

7.4 mp:execute

You can ask the METAPOST interpreter to run a chunk of code by calling

local rettable = mp:execute(’metapost language chunk’)

for various bits of Metapost language input. Be sure to check the rettable.status (see below)
because when a fatal METAPOST error occurs the MPlib instance will become unusable thereafter.
Generally speaking, it is best to keep your chunks small, but beware that all chunks have to obey
proper syntax, like each of them is a small file. For instance, you cannot split a single statement
over multiple chunks.
In contrast with the normal standalone mpost command, there is no implied ‘input’ at the start
of the first chunk.

7.5 mp:finish

local rettable = mp:finish()

If for some reason you want to stop using an MPlib instance while processing is not yet actually
done, you can call mp:finish. Eventually, used memory will be freed and open files will be closed
by the Lua garbage collector, but an explicit mp:finish is the only way to capture the final part
of the output streams.

7.6 Result table

The return value of mp:execute and mp:finish is a table with a few possible keys (only status
is always guaranteed to be present).

log string output to the ‘log’ stream
term string output to the ‘term’ stream
error string output to the ‘error’ stream (only used for ‘out of memory’)
status number the return value: 0=good, 1=warning, 2=errors, 3=fatal error
fig table an array of generated figures (if any)

When status equals 3, you should stop using this MPlib instance immediately, it is no longer
capable of processing input.
If it is present, each of the entries in the fig array is a userdata representing a figure object, and
each of those has a number of object methods you can call:

boundingbox function returns the bounding box, as an array of 4 values
postscript function return a string that is the ps output of the fig
svg function return a string that is the svg output of the fig

27

png function return a string that is the png output of the fig
objects function returns the actual array of graphic objects in this fig
copy_objects function returns a deep copy of the array of graphic objects in this fig
filename function the filename this fig’s PostScript output would have written to in stand-

alone mode
width function the charwd value
height function the charht value
depth function the chardp value
italcorr function the charic value
charcode function the (rounded) charcode value

NOTE: you can call fig:objects() only once for any one fig object!
When the boundingbox represents a ‘negated rectangle’, i.e. when the first set of coordinates is
larger than the second set, the picture is empty.
Graphical objects come in various types that each have a different list of accessible values. The
types are: fill, outline, text, start_clip, stop_clip, start_bounds, stop_bounds, special.
There is helper function (mplib.fields(obj)) to get the list of accessible values for a particular
object, but you can just as easily use the tables given below).
All graphical objects have a field type that gives the object type as a string value, that not explicit
mentioned in the tables. In the following, numbers are PostScript points represented as a floating
point number, unless stated otherwise. Field values that are of table are explained in the next
section.

7.6.1 fill

path table the list of knots
htap table the list of knots for the reversed trajectory
pen table knots of the pen
color table the object’s color
linejoin number line join style (bare number)
miterlimit number miter limit
prescript string the prescript text
postscript string the postscript text

The entries htap and pen are optional.
There is helper function (mplib.pen_info(obj)) that returns a table containing a bunch of vital
characteristics of the used pen (all values are floats):

width number width of the pen
rx number x scale
sx number xy multiplier
sy number yx multiplier
ry number y scale
tx number x offset
ty number y offset

7.6.2 outline

path table the list of knots
pen table knots of the pen

28

color table the object’s color
linejoin number line join style (bare number)
miterlimit number miter limit
linecap number line cap style (bare number)
dash table representation of a dash list
prescript string the prescript text
postscript string the postscript text

The entry dash is optional.

7.6.3 text

text string the text
font string font tfm name
dsize number font size
color table the object’s color
width number
height number
depth number
transform table a text transformation
prescript string the prescript text
postscript string the postscript text

7.6.4 special

prescript string special text

7.6.5 start_bounds, start_clip

path table the list of knots

7.6.6 stop_bounds, stop_clip

Here are no fields available.

7.7 Subsidiary table formats

7.7.1 Paths and pens

Paths and pens (that are really just a special type of paths as far as MPlib is concerned) are
represented by an array where each entry is a table that represents a knot.

left_type string when present: ’endpoint’, but ususally absent
right_type string like left_type
x_coord number x coordinate of this knot
y_coord number y coordinate of this knot
left_x number x coordinate of the precontrol point of this knot

29

left_y number y coordinate of the precontrol point of this knot
right_x number x coordinate of the postcontrol point of this knot
right_y number y coordinate of the postcontrol point of this knot

There is one special case: pens that are (possibly transformed) ellipses have an extra string-valued
key type with value elliptical besides the array part containing the knot list.

7.7.2 Colors
A color is an integer array with 0, 1, 3 or 4 values:

0 marking only no values
1 greyscale one value in the range (0,1), ‘black’ is 0
3 RGB three values in the range (0,1), ‘black’ is 0,0,0
4 CMYK four values in the range (0,1), ‘black’ is 0,0,0,1

If the color model of the internal object was unitialized, then it was initialized to the values
representing ‘black’ in the colorspace defaultcolormodel that was in effect at the time of the
shipout.

7.7.3 Transforms
Each transform is a six-item array.

1 number represents x
2 number represents y
3 number represents xx
4 number represents yx
5 number represents xy
6 number represents yy

Note that the translation (index 1 and 2) comes first. This differs from the ordering in PostScript,
where the translation comes last.

7.7.4 Dashes

Each dash is two-item hash, using the same model as PostScript for the representation of the
dashlist. dashes is an array of ‘on’ and ‘off’, values, and offset is the phase of the pattern.

dashes hash an array of on-off numbers
offset number the starting offset value

7.8 Character size information

These functions find the size of a glyph in a defined font. The fontname is the same name as the
argument to infont; the char is a glyph id in the range 0 to 255; the returned w is in AFM units.

7.8.1 mp.char_width

<number> w = mp.char_width(<string> fontname, <number> char)

30

7.8.2 mp.char_height

<number> w = mp.char_height(<string> fontname, <number> char)

7.8.3 mp.char_depth

<number> w = mp.char_depth(<string> fontname, <number> char)

7.9 Solving path control points

<boolean> success = mp.solve_path(<table> knots, <boolean> cyclic)

This modifies the knots table (which should contain an array of points in a path, with the sub-
structure explained below) by filling in the control points. The boolean cyclic is used to determine
whether the path should be the equivalent of –cycle. If the return value is false, there is an
extra return argument containing the error string.
On entry, the individual knot tables can contain the values mentioned above (but typically the
left_{x,y} and right_{x,y} will be missing). {x,y}_coord are both required. Also, some extra
values are allowed:

left_tension number A tension specifier
right_tension number like left_tension
left_curl number A curl specifier
right_curl number like left_curl
direction_x number x displacement of a direction specifier
direction_y number y displacement of a direction specifier

Note the following:

• A knot has either a direction specifier, or a curl specifier, or a tension specification, or explicit
control points, with the note that tensions, curls and control points are split in a left and a
right side (directions apply to both sides equally).

• The absolute value of a tension specifier should be more than 0.75 and less than 4096.0, with
negative values indicating ‘atleast’.

• The absolute value of a direction or curl should be less than 4096.0.

• If a tension, curl, or direction is specified, then existing control points will be replaced by the
newly computed value.

• Calling solve_path does not alter the used mplib instance.

	Table of contents
	Introduction
	Simple MPlib use
	Embedded MPlib use

	C API for core MPlib
	Structures
	MP_options
	MP
	mp_run_data
	mp_stream

	Function prototype typedefs
	*mp_file_finder
	*mp_editor_cmd
	*mp_makempx_cmd

	Enumerations
	mp_filetype
	mp_interaction_mode
	mp_math_mode
	mp_history_state
	mp_color_model
	mp_graphical_object_code

	Functions
	mp_metapost_version
	mp_options
	mp_initialize
	mp_status
	mp_finished
	mp_run
	mp_userdata
	mp_troff_mode
	mp_rundata
	mp_execute
	mp_finish
	mp_get_char_dimension
	mp_memory_usage
	mp_hash_usage
	mp_param_usage
	mp_open_usage

	C API for path and knot manipulation
	Enumerations
	mp_knot_type
	mp_knot_originator

	Structures
	mp_number
	mp_knot

	Functions for accessing knot data
	mp_knot_x_coord
	mp_knot_y_coord
	mp_knot_left_x
	mp_knot_left_y
	mp_knot_right_x
	mp_knot_right_y
	mp_knot_left_type
	mp_knot_right_type
	mp_knot_next
	mp_knot_left_curl
	mp_knot_left_given
	mp_knot_left_tension
	mp_knot_right_curl
	mp_knot_right_given
	mp_knot_right_tension
	mp_number_as_double

	Functions for creating and modifying knot data
	mp_create_knot
	mp_set_knot
	mp_close_path
	mp_close_path_cycle
	mp_append_knot
	mp_set_knot_left_curl
	mp_set_knot_right_curl
	mp_set_knot_curl
	mp_set_knotpair_curls
	mp_set_knot_direction
	mp_set_knotpair_directions
	mp_set_knotpair_tensions
	mp_set_knot_left_tension
	mp_set_knot_right_tension
	mp_set_knot_left_control
	mp_set_knot_right_control
	mp_set_knotpair_controls
	mp_solve_path
	mp_free_path

	Example usage

	C API for graphical backend functions
	Structures
	mp_gr_knot
	mp_color
	mp_dash_object
	mp_graphic_object
	mp_fill_object
	mp_stroked_object
	mp_text_object
	mp_clip_object
	mp_bounds_object
	mp_special_object
	mp_edge_object

	Functions
	mp_ps_ship_out
	mp_svg_ship_out
	mp_png_ship_out
	mp_gr_toss_objects
	mp_gr_toss_object
	mp_gr_copy_object

	C API for label generation (a.k.a. makempx)
	Structures
	MPX
	mpx_options

	Function prototype typedefs
	*mpx_file_finder

	Enumerations
	mpx_modes
	mpx_filetype

	Functions
	mpx_makempx

	Lua API
	mplib.version
	mplib.new
	mp:statistics
	mp:execute
	mp:finish
	Result table
	fill
	outline
	text
	special
	start_bounds, start_clip
	stop_bounds, stop_clip

	Subsidiary table formats
	Paths and pens
	Colors
	Transforms
	Dashes

	Character size information
	mp.char_width
	mp.char_height
	mp.char_depth

	Solving path control points

