
Documentation for xcomment.sty∗

Timothy Van Zandt Timothy.VAN-ZANDT@insead.edu

May 14, 2010

∗Documentation revised by Herbert Voß. This file borrows much from verbatim.sty,
v.1.4c (90/10/18) Copyright (C) 1989, 1990 by Rainer Schöpf.

1

Contents

1 Usage notes 3

2 The implementation 6
2.1 User commands . 7
2.2 Preliminaries . 8
2.3 Toplevel macros . 9

2

Abstract

The LATEX style option verbatim.sty, by Rainer Schöpf, allows one
to redefine an environment to be a comment, and thereby selectively
omit certain environments when typesetting a document. Suppose
instead that one wants to typeset only selected environments? For
example, one might want to print only a document’s tables and fig-
ures, without having to enclose all the text outside these environ-
ments within comments. This style option allows such selection.

1 Usage notes

This style file defines a new environment, xcomment, which permits one to
typeset only selected environments, without having to enclose all the text
outside these environments within comments. The main interest in such
a feature is that it allows document styles to have great control over what
parts of a document are typeset, thus extending the modularity of LATEX.
For example, this option was originally written for use in a document style
for seminar notes and slides. The main text of the input file consists of the
notes for a seminar, and each slide goes in a slide environment. A simple
modification of the style options allows one to typeset only the slides, only
the notes, or both together, in a variety of styles.

The xcomment environment has as a single mandatory argument a list
(possibly empty) of environments, separated by commas and with no spaces.
Within the xcomment environment, only text within each of the specified
environments is typeset. The \xcomment command can also be used di-
rectly, with the same argument, and it would typically go in the preamble.
Invoking the \xcomment command is equivalent to putting \begin{xcomment}

at the invocation of the command or immediately after \begin{document},
whichever occurs later in the document, and \end{xcomment} just before
the end of the document.

For example, if \xcomment{table,figure} is put in the preamble, only
tables and figures are typeset (but see \nofloat below). If the list of envi-
ronments is empty, as in \begin{xcomment}{}, the xcomment environment
is essentially like the comment environment in verbatim.sty.

xcomment environments can be nested, but if the nested environments
have the same name, the inner environments must be inside text that is
typeset as specified by the xcomment environment the next level up.

3

Here is an example of such nesting. Suppose we want to include only
figures, but we also want to be able to comment out some of the figures so
that they are not included. This is achieved in the following example:

1 \newxcomment[]{mycomment}

2 \begin{xcomment}{figure,mycomment}

3 This is stuff that is not included.

4 \begin{figure}

5 This figure is included.

6 \end{figure}

7 More stuff that is not included.

8 \begin{mycomment} Out and back into comment mode

9 \begin{figure} Ignored by mycomment envir.

10 This figure is NOT included.

11 \end{figure} Also ignored by mycomment envir.

12 \end{mycomment} In and back out of comment mode.

13 More stuff that is not included.

14 \end{xcomment}

xcomment will follow \input and \include commands. You must use
the LATEX syntax \input{file} (as opposed to \input␣file␣), and the in-
putted file must end with \endinput. You should be in xcomment mode
when the \endinput command occurs if and only if you were in \xcomment

mode when the \input or \include command was found.
xcomment is searching literally for \begin{foo} and \end{foo} when

determining whether to switch in or out of comment mode. It will not
find, e.g., !begin[foo], even if !, [or] have category codes 0, 1 and 2,
respectively. (If you don’t understand this, you can safely ignore it.)

The comment character, %, is still a comment character in xcomment en-
vironments (even if used with \%). You can change the command character
by redefining \xcommentchar. For example, if I want to use " as a comment
character:

1 \renewcommand{\xcommentchar}{\"}

If you define \xcommentchar to be empty, then no comment character is
used.

In the xcomment environment, text is processed a line at a time and
discarded until \end{xcomment} or \begin{environment} is encountered,

4

where environment is to be included. The remaining text on the line is
not thrown away, as it is in verbatim.sty. Instead, it is rescanned, and the
only restrictions are that it have balanced braces and that it not contain
commands that again shift into and out of “comment” mode.

This is an important feature, because the included environments may
have arguments that are best placed on the same line as the \begin{environment}
command. However, the rescanning creates a temporary file. By default,
the file is \jobname.tmp. The command \rescanfile{file} causes file to
be created instead. \rescanfile{} suppresses the creation of a temporary
file; the leftover text is simply discarded. \norescanfile also suppresses
the creation of a temporary file, but in this case the text is simply inserted
without being rescanned (i.e., with category codes 0 (escape \), 1 (begin
group {), 2 (end group }) and 6 (parameter #) switched to 12 (other).

The command \envirsep is executed between the environments that
are typeset. Its default definition is \par.

The command

1 \newxcomment[|\meta{environment list}|]{|\meta{name}|}

defines \name and the name environment to work like \xcomment and the
xcomment environment. A list of environments to be included can be given
as an optional first argument to \newxcomment, in which case the new com-
mand and environment do not take an argument. For example, if you put
\newxcomment[]{mycomment} in the preamble, the mycomment environment
works like the comment environment in verbatim.sty, except for the rescan-
ning.

The command \nofloat{environment list} is provided to disable the
floating of environments in the list (also separated by commas and without
spaces), since if there are only floats and no text, the floats will accumulate
to the end of the document and TEX may run out of memory.

Caveats:

• If \xcomment is invoked in the preamble, \document should not be
subsequently redefined.

• Be careful what argument you give to \rescanfile, since any exist-
ing file with that name will be destroyed, and the extension tex is
added if no extension is given.

5

Changes to v1.2:

• \include now allowed.

• Comment characters not obeyed, as determined by \xcommentchar.

Changes to v1.1:

• Fixed bug in \@xcomment that caused problems when invoking \xcomment

in the preamble.

Changes to v1.0:

• Main loop rewritten.

• \rescanfile{trash} changed to \rescanfile{}.

• \rescanfile{bounce} no longer supported. Use \norescanfile.

• \input now allowed.

2 The implementation

The code is an adaption of code in verbatim.sty, and in fact the latter’s
structure has been preserved when possible. On the one hand, the code is
simpler than in verbatim.sty because we throw away text from the input
file rather than typeset it verbatim. On the other hand, it is more involved
because we have to check for more possible endings to the xcomment than
in verbatim.sty and we have to preserve the input that follows the \beginning
of an included environment on the same line.

As in verbatim.sty and the \comment\endcomment commands in AMS-
TEX, the basic strategy is to change the category codes so that control
sequences and other troublesome special characters are neutralized, and
then to scan for the strings that mark the end of the comment. This would
be a 3-liner in awk, but this is TEX, and the amount of code required to do
the scanning increases rapidly as we allow for a greater variety of ending
strings.

We begin by ensuring that file is not read in twice, and then we identify
the file on the VDU and the transcript file.

6

1 \@ifundefined{xcomment@@@}{}{\endinput}

2 \typeout{Style-Option: ‘xcomment’ v\fileversion \space <\filedate> (tvz) }

2.1 User commands

The main toplevel macro is \@xcomment, which is defined in the next sec-
tion. It works like \xcomment as described above, except that it has as a first
argument an environment so that it stops when it encounters \end{environment}.
\newxcomment then has a simple definition, and \xcomment is defined us-
ing the \newxcomment command.

1 \def\newxcomment{\@ifnextchar [{\@newxcommentwitharg}%

2 {\@newxcomment}}

3 \def\@newxcomment#1{%

4 \expandafter\def\csname #1\endcsname##1{\@xcomment{#1}{##1}}}%

5 \def\@newxcommentwitharg[#1]#2{%

6 \expandafter\def\csname #2\endcsname{\@xcomment{#2}{#1}}}

7 \newxcomment{xcomment}

\envirsep is inserted between the environments that are typeset, and is
set to \par by default. \rescanfile is the name of the temporary file used
for rescanning, and is set to \jobname.tmp by default.

1 \def\envirsep{\par}

2 \def\rescanfile#1{\def\@rescanfile{#1}}

3 \rescanfile{\jobname.tmp}

4 \def\norescanfile{\let\@rescanfile\relax}

\nofloat disables floating, and \vfill is inserted forcefully on each side
of each float. The macro is just a hack, and is mainly for printing only
floats. It may not work well even for that. \envirsep is still inserted be-
tween floats, and if it is set to \vspace{}, the added space is inserted only
between floats on the same page, given the user some control over spac-
ing.

1 \def\@nofloat#1{\hrule height\z@\nobreak\vfill\vbox\bgroup\def\@captype{#1}}

2 \def\end@nofloat{\egroup\nobreak\vfill\nobreak\hrule height\z@\medbreak}

3 \def\nofloat#1{\@for\@tempa:=#1\do{\@namedef{#1}{\@nofloat{#1}}%

4 \@namedef{end#1}{\end@nofloat}}}

7

2.2 Preliminaries

\xc@makeother takes as argument a character and changes its category
code to 12 (other) if its category code is originally 0, 1, 2 or 6. We do not
have to change as many catcodes as in Verbatim.sty, because the input is
either thrown away or rescanned. The fewer codes we change the better.

1 \def\xc@makeother#1{%

2 \ifnum\the\catcode‘#1=0\catcode‘#112%

3 \else \ifnum\the\catcode‘#1=1\catcode‘#112%

4 \else \ifnum\the\catcode‘#1=2\catcode‘#112%

5 \else \ifnum\the\catcode‘#1=6\catcode‘#112%

6 \fi\fi\fi\fi\relax}

This macro changes the category codes of a token list that is already
in TEX’s stomach. The code is a modification of a \retokenize macro by
Raymond Chen.

1 \newwrite\tokout

2 \newread\tokin

The argument of \rescan is a token list register, say, \mytoks. \mytoks

presumably contains a string from the input file, sent to \TeX’s stomach as
a stream of tokens. \rescan gives \mytoks the token list that would have
arisen if \TeX had had the current catcodes in effect when it read the input
string, with the following exceptions:

• The token list must have balanced braces under the new catcodes.

• Parameter tokens in the original list are written twice, and so mess
things up.

• Some characters with catcode 10 (space) under the old catcodes are
lost, and all that remain are treated as character 32 (␣) under the new
catcodes, whatever this character’s new catcode is.

• Escape characters under the old catcodes are treated as escape char-
acters even if their catcodes have changed. (This can be fixed by
setting \escapchar during the write to the escape character under
the old catcodes, assuming there was only one and it is known)

8

• Leading spaces under the new catcodes are not ignored, which is
wrong if and only if the string started at the beginning of a line and
the space characters were not spaces under the old catcodes.

Only the balanced braces exception is a problem in this application,
but the other exceptions are pointed out since such a rescanning macro
has other applications.

1 \def\rescan#1{%

First we check if \rescanfile, which contains the name of the temporary
file to be used, has a special meaning. If \relax, do nothing. If empty,
empty the token register.

1 \ifx\@rescanfile\relax\else

2 \ifx\@rescanfile\@empty #1{}\else

Put the list of tokens in braces and write them to the temporary file.

1 \immediate\openout\tokout=\@rescanfile

2 \immediate\write\tokout{{\the#1}\relax}%

3 \immediate\closeout\tokout

Read the contents of the file \@tempd.

1 \openin\tokin=\@rescanfile

2 \read\tokin to\@tempd

3 \closein\tokin

Suppose #1 is \mytok, and token list is the list of tokens with the current
catcodes. Then the next line expands to \mytok{token list}\relax.

1 \expandafter#1\@tempd%

2 \fi\fi}

2.3 Toplevel macros

\@xcomment checks whether it was invoked before \begin{document} and
outside of an environment. If so, it modifies \begin{document} to invoke
\@xcomment with the same arguments. Otherwise, it processes its argu-
ments and goes into “comment” mode by invoking \xc@begin.

9

1 \def\@xcomment#1#2{%

2 \ifx\@preamblecmds\@notprerr

3 \def\xc@csname{#1}%

4 \edef\xc@envirlist{#2}%

5 \ifx\xc@envirlist\@empty \@bsphack \else

6 \begingroup

\@envirsep is what is actually placed before each environment. Initially,
it is empty because nothing should precede the first environment that is
typeset.

1 \def\@envirsep{}%

\do@end is appended to the meaning of \end, and it is initially set to \xc@begin.
This means that the \end of an included environment switches us back into
“comment” mode, as desired. The \end of nested environments should
have their usual meaning, however. Therefore, \do@begin is prepended
to the definition of \begin, and it sets \do@end to \relax. Included en-
vironment are begun with \normal@begin because we only want to reset
\do@end for nested environements. The group begun above keeps the \end
of the xcomment environment from be being affected by these changes.

1 \@ifundefined{normal@begin}{\let\normal@begin\begin}{}%

2 \@ifundefined{normal@end}{\let\normal@end\end}{}%

3 \def\begin##1{\do@begin{##1}\normal@begin{##1}}%

4 \def\end##1{\normal@end{##1}\do@end}%

5 \def\do@begin##1{\@ifundefined{##1}{}{\def\do@end{}}}%

6 \let\do@end\xc@begin

7 \fi

8 \let\next\xc@begin

9 \else

10 \expandafter\@temptokena\expandafter{\document\@xcomment{@@@}{#2}}%

11 \edef\document{\the\@temptokena}%

12 \let\next\relax

13 \fi

14 \next}

15 \def\end@xcomment{\ifx\xc@envirlist\@empty \@esphack \else \endgroup \fi}%

\xc@begin starts up “comment” mode by changing the category codes and
invoking \xcomment@. The \begingroup keeps these catcode changes local.

10

1 \def\xc@begin{%

2 \begingroup

3 \let\do\xc@makeother

4 \dospecials

5 \ifx\xcommentchar\@empty\else

6 \expandafter\catcode\expandafter‘\xcommentchar=14

7 \fi

8 \catcode‘\^^M\active

9 \xcomment@}

10 \def\xcommentchar{\%}

11

