Test for Aho Alfred

Exercise

The diagonal of a rectangle is 212 in and a side of this rectangle is 180 in . What is the length of the other side of the rectangle?

Answer to the test for Aho Alfred

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
212^{2}=180^{2}+\operatorname{side}^{2}
$$

and then

$$
\operatorname{side} 2=\sqrt{212^{2}-180^{2}}=112
$$

Test for Babbage Charles

Exercise

The diagonal of a rectangle is 353 in and a side of this rectangle is 225 in . What is the length of the other side of the rectangle?

Answer to the test for Babbage Charles

Exercise
Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
353^{2}=225^{2}+\operatorname{side}^{2}
$$

and then

$$
\operatorname{side} 2=\sqrt{353^{2}-225^{2}}=272
$$

Test for Chaitin Gregory

Exercise

Find the length of the diagonal of a rectangle that is 111 in by 680 in .

Answer to the test for Chaitin Gregory

Exercise
Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
\operatorname{diag}^{2}=111^{2}+680^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{111^{2}+680^{2}}=689
$$

Test for Dijkstra Edsger

Exercise

The diagonal of a rectangle is 325 in and a side of this rectangle is 253 in . What is the length of the other side of the rectangle?

Answer to the test for Dijkstra Edsger

Exercise
Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
325^{2}=253^{2}+\operatorname{side}^{2}
$$

and then

$$
\operatorname{side} 2=\sqrt{325^{2}-253^{2}}=204
$$

Test for Eckert John Preper

Exercise

Find the length of the diagonal of a rectangle that is 189 in by 340 in .

Answer to the test for Eckert John Preper

Exercise
Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
\operatorname{diag}^{2}=189^{2}+340^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{189^{2}+340^{2}}=389
$$

Test for Floyd Robert

Exercise

Find the length of the diagonal of a rectangle that is 240 in by 238 in .

Answer to the test for Floyd Robert

Exercise
Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
\operatorname{diag}^{2}=240^{2}+238^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{240^{2}+238^{2}}=338
$$

Test for Gödel Kurt

Exercise

The diagonal of a rectangle is 260 in and a side of this rectangle is 132 in . What is the length of the other side of the rectangle?

Answer to the test for Gödel Kurt

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
260^{2}=132^{2}+\operatorname{side} 2^{2}
$$

and then

$$
\operatorname{side} 2=\sqrt{260^{2}-132^{2}}=224
$$

Test for Huffman David

Exercise

Find the length of the diagonal of a rectangle that is 320 in by 462 in .

Answer to the test for Huffman David

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
\operatorname{diag}^{2}=320^{2}+462^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{320^{2}+462^{2}}=562
$$

Test for Ichbiah Jean

Exercise

The diagonal of a rectangle is 569 in and a side of this rectangle is 231 in . What is the length of the other side of the rectangle?

Answer to the test for Ichbiah Jean

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
569^{2}=231^{2}+\operatorname{side}^{2}
$$

and then

$$
\operatorname{side} 2=\sqrt{569^{2}-231^{2}}=520
$$

Test for Joshi Aravind

Exercise
Find the length of the diagonal of a rectangle that is 207 in by 224 in .

Answer to the test for Joshi Aravind

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side} 2^{2}
$$

Here:

$$
\operatorname{diag}^{2}=207^{2}+224^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{207^{2}+224^{2}}=305
$$

Test for Knuth Donald

Exercise

Find the length of the diagonal of a rectangle that is 119 in by 120 in .

Answer to the test for Knuth Donald

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side} 2^{2}
$$

Here:

$$
\operatorname{diag}^{2}=119^{2}+120^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{119^{2}+120^{2}}=169
$$

Test for Lovelace Ada

Exercise

The diagonal of a rectangle is 245 in and a side of this rectangle is 147 in . What is the length of the other side of the rectangle?

Answer to the test for Lovelace Ada

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
245^{2}=147^{2}+\operatorname{side}^{2}
$$

and then

$$
\text { side } 2=\sqrt{245^{2}-147^{2}}=196
$$

Test for Moore Gordon

Exercise

The diagonal of a rectangle is 505 in and a side of this rectangle is 377 in . What is the length of the other side of the rectangle?

Answer to the test for Moore Gordon

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side} 2^{2}
$$

Here:

$$
505^{2}=377^{2}+\operatorname{side} 2^{2}
$$

and then

$$
\operatorname{side} 2=\sqrt{505^{2}-377^{2}}=336
$$

Test for Neumann (Von) John

Exercise

The diagonal of a rectangle is 305 in and a side of this rectangle is 273 in . What is the length of the other side of the rectangle?

Answer to the test for Neumann (Von) John

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
305^{2}=273^{2}+\operatorname{side}^{2}
$$

and then

$$
\text { side } 2=\sqrt{305^{2}-273^{2}}=136
$$

Test for Ouserhout John

Exercise
Find the length of the diagonal of a rectangle that is 240 in by 418 in .

Answer to the test for Ouserhout John

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
\operatorname{diag}^{2}=240^{2}+418^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{240^{2}+418^{2}}=482
$$

Test for Pascal Blaise

Exercise

The diagonal of a rectangle is 425 in and a side of this rectangle is 375 in . What is the length of the other side of the rectangle?

Answer to the test for Pascal Blaise

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
425^{2}=375^{2}+\operatorname{side} 2^{2}
$$

and then

$$
\operatorname{side} 2=\sqrt{425^{2}-375^{2}}=200
$$

Test for Ritchie Dennis

Exercise
Find the length of the diagonal of a rectangle that is 185 in by 672 in .

Answer to the test for Ritchie Dennis

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
\operatorname{diag}^{2}=185^{2}+672^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{185^{2}+672^{2}}=697
$$

Test for Shannon Claude

Exercise
Find the length of the diagonal of a rectangle that is 224 in by 360 in .

Answer to the test for Shannon Claude

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
\operatorname{diag}^{2}=224^{2}+360^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{224^{2}+360^{2}}=424
$$

Test for Thompson Ken

Exercise

The diagonal of a rectangle is 458 in and a side of this rectangle is 120 in . What is the length of the other side of the rectangle?

Answer to the test for Thompson Ken

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:
and then

$$
458^{2}=120^{2}+\operatorname{side}^{2}
$$

$$
\text { side } 2=\sqrt{458^{2}-120^{2}}=442
$$

Test for Ullman Jeffrey

Exercise

Find the length of the diagonal of a rectangle that is 153 in by 104 in .

Answer to the test for Ullman Jeffrey

Exercise
Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
\operatorname{diag}^{2}=153^{2}+104^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{153^{2}+104^{2}}=185
$$

Test for Vixie Paul

Exercise

Find the length of the diagonal of a rectangle that is 175 in by 600 in .

Answer to the test for Vixie Paul

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
\operatorname{diag}^{2}=175^{2}+600^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{175^{2}+600^{2}}=625
$$

Test for Wall Larry

Exercise

Find the length of the diagonal of a rectangle that is 112 in by 384 in .

Answer to the test for Wall Larry

Exercise
Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
\operatorname{diag}^{2}=112^{2}+384^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{112^{2}+384^{2}}=400
$$

Test for Yao Adrew Chi-Chih

Exercise

Find the length of the diagonal of a rectangle that is 105 in by 608 in .

Answer to the test for Yao Adrew Chi-Chih

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
\operatorname{diag}^{2}=105^{2}+608^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{105^{2}+608^{2}}=617
$$

Test for Zuse Konrad

Exercise
Find the length of the diagonal of a rectangle that is 319 in by 360 in .

Answer to the test for Zuse Konrad

Exercise

Use Pythagorean theorem. We have:

$$
\operatorname{diag}^{2}=\operatorname{side}^{2}+\operatorname{side}^{2}{ }^{2}
$$

Here:

$$
\operatorname{diag}^{2}=319^{2}+360^{2}
$$

and then

$$
\operatorname{diag}=\sqrt{319^{2}+360^{2}}=481 .
$$

