
An Enhanced Implementation of the Allocation
Macros in LATEX2ε, LATEX 2.09, and plain-TEX

Bernd Raichle
Stettener Str. 73

D-73732 Esslingen, FRG
Email: raichle@Informatik.Uni-Stuttgart.DE

1995/09/24 (v1.1b)

Abstract
This style option reimplements the allocation command macros provided

by plain-TEX and adds macros to allow allocation of local registers inside
groups.

1 Introduction

1.1 Restrictions of plain.tex’s Register Allocation Macros
In plain.tex, Donald E. Knuth writes about the macros for register allocation [2,
lines 149ff]:

When a register is used only temporarily, it need not be allocated;
grouping can be used, making the value previously in the register re-
turn after the close of the group. The main use of these macros is for
registers that are defined by one macro and used by others, possibly
at different nesting levels. All such registers should be defined through
these macros; otherwise conflicts may occur, especially when two or
more more macro packages are being used at once.

Additional remarks can be read in the TeXbook [1, p. 346]:

Allocation of registers. The second major part of the plain.tex file
provides a foundation on which systems of independently developed
macros can coexist peacefully without interfering in their usage of reg-
isters. The idea is that macro writers should abide by the macro con-
ventions following ground rules: [. . . ] (4) Furthermore, it’s possible to
use any register in a group, if you ensure that TEX’s grouping mech-
anism will restore the register when you’re done with the group, and
if you are certain that other macros will not make global assignments
to that register when you need it. (5) But when a register is used
by several macros, or over long spans of time, it should be allocated
by \newcount, \newdimen, \newbox, etc. (6) Similar remarks apply
[. . . ] to insertions (which require \box, \count, \dimen, and \skip
registers all having the same number).

1



This means, that within plain-TEX and all formats based on plain-TEX a user
can not allocate a register for temporary use using the given mechanisms. Nonethe-
less there is often the need for a allocated register which is only used within a rather
small piece of document text and should be set free for reuse in the rest of the
formatting run:

If a macro \macroa needs a register which should never be destroyed by another
macro \macrob which is called by \macroa, you either have to know about the
realisation of \macrob or you have to allocate a new register.

The name of this newly allocated register is only known to the macro package
in which macro \macroa resides. If you have a lot of macros which needs registers
by their own it is possible that all of the 256 registers of one type will be allocated.
In most cases it would be possible to share some of these registers by more than
one macro because the register is only needed within (an environment delimited
by) a group. To share registers—if they are used only locally—it will be necessary
to provide a mechanism to allocate registers locally. Unfortunately plain.tex
and all derived formats, like LATEX, misses this mechanism leading to the problem
that some macro packages cannot be combined.

In the following example it is necessary to call two macros \macroa and macrob
in the same group (e.g. because \macroa performs special actions at the begin and
\macrob at the end of an environment). Further you do not have any knowledge
about the use of scratch register in \macroa, \macrob or the text in the argument
specified by the user. Therefore it is impossible to use a scratch register to save
the current value of \hsize; we have to allocate a new register to save it.

\newdimen\savedhsize

\def\callAandB#1{\begingroup
\savedhsize=\hsize
\hsize=0.8\hsize \macroa
#1\relax
\hsize=\savedhsize \macrob

\endgroup}

If there will be a mechanism, e.g. by a macro \lnewdimen, to allocate a local
register it is possible to use this local register inside the group without worrying
about possible dependencies between the macros and the user specified text. Ad-
ditionally after leaving the group, the dimen register will be free to be used by
other macros.

\def\callAandB#1{\begingroup
\lnewdimen\savedhsize \savedhsize=\hsize
\hsize=0.8\hsize \macroa
#1\relax
\hsize=\savedhsize \macrob

\endgroup}

1.2 Local Register Allocation Macros
When using this reimplementation of the allocation macros, the plain.tex macros\newcount

\newdimen
\newskip
\newbox

\newinsert

\newcount, \newdimen, \newskip, and \newbox will have a changed behaviour in
two aspects:

2



• Do not assume that registers which are allocated consecutively have con-
secutive register numbers. In general you should not make any assumption
about the order of register numbers.

• It is possible that a register was locally allocated and used in the past. After
leaving the group the register is set to free and the old value—normally
zero—is restored. Nonetheless you should not assume that a newly allocated
register is initialised with the value zero.

The behaviour of the macros \newmuskip and \newtoks are not changed\newmuskip
\newtoks because they are not used for insertions. Nonetheless this can be changed in a

future version.
\lnewcount, \lnewdimen, \lnewskip, \lnewmuskip, \lnewbox, and \lnewtoks\lnewcount

\lnewdimen
\lnewskip

\lnewmuskip
\lnewbox

\lnewtoks

are the set of new macros to allocate registers within the scope of the current group.
At the end of the current group the allocated register is freed.

As with their global counterparts you should not assume that the registers are
allocated in a consecutive order—neither increasing nor decreasing—or that the
allocated register is initialised with zero.

1.3 Usage Examples
1.3.1 LATEX’s Picture Environment

LATEX’s picture environment uses the box register \@picbox and the dimen register
\@picht to save the contents of a picture and the user specified height of this
picture at the beginning of the environment. These two registers are set at the
beginning and used at the end of the picture environment. Because the two
registers are used nowhere else, it is possible to share them by only allocating
them within the environment.

This is the simplified code for the \begin{picture} and \end{picture} com-
mands; the macros \begin and \end start and end a new group:

\newbox\@picbox
\newdimen\@picht

\def\picture(#1,#2){%
\@picht = #2\unitlength % save picture height
\setbox\@picbox = \hbox to #1\unitlength\bgroup

\ignorespaces}

\def\endpicture{%
\hss

\egroup % close picture box
\ht\@picbox = \@picht % set box height to save picture height
\dp\@picbox = 0pt % set box depth to 0pt
\mbox{\box\@picbox}} % output this box

Using the new local allocation macros the code changes is simple: Move the
\newbox and \newdimen command within the \picture macro definition and re-
name them to \lnewbox and \lnewdimen:

%\newbox\@picbox
%\newdimen\@picht

3



\def\picture(#1,#2){%
\lnewbox\@picbox
\lnewdimen\@picht
\@picht = #2\unitlength % save picture height
\setbox\@picbox = \hbox to #1\unitlength\bgroup

\ignorespaces}

Additionally we can use a property of the usage pattern of these two registers:
Within a nested use of the picture environment—you can use subpictures within
a picture—these registers are allocated for each nesting level. This is not really
necessary because the box and the dimen register is always used in a group and
is never changed globally. It is possible to add tests to avoid a (local) reallocation
of these registers:

\let\@picbox=\relax % mark register as not yet allocated
\let\@picht =\relax % mark register as not yet allocated

\def\picture(#1,#2){%
\ifx\@picbox\relax \lnewbox\@picbox \fi
\ifx\@picht\relax \lnewdimen\@picht \fi
\@picht = #2\unitlength % save picture height
\setbox\@picbox = \hbox to #1\unitlength\bgroup

\ignorespaces}

1.3.2 LATEX’s \multiput Macro

Another example of registers which are used only in one rarely used macro, are
the count register \@multicnt and the two dimen registers \@xdim and \@ydim for
the \multiput command. To change it according to the scheme above you have
to insert an additional grouping.

In LATEX 2ε these three rarely used registers and some more are shared with the
\bezier command, whose definition has to be changed accordingly. This shows
the need—and advantage—of a better allocation scheme.

1.3.3 PICTEX

The macro package PICTEX uses a lot of dimen registers. A subset of these registers
are only used within a picture or within a set of drawing and parameter setting
commands.

As an example the dimen registers \totalarclength is only used in a very re-
strictic set of commands, i.e., it can be allocated within the scope of the higher level
commands or within PICTEX’s \beginpicture . . . \endpicture environment.

2 Implementation

2.1 Prolog, LATEX 2ε Package Declarations, etc.
The very first thing we do is to ensure that this file is not read in twice. To this
end we check whether the macro \lnewcount is defined. If so, we just stop reading
this file.

1 〈+package〉\expandafter\ifx\csname lnewcount\endcsname\relax
2 〈+package〉\else \expandafter\endinput \fi

4



For the sake of LATEX 2ε users declarations for this package are included. The
additional group hack is needed to prevent the definition of \ProvidesPackage as
\relax if it is undefined.

3 〈+package | test〉\begingroup\expandafter\expandafter\expandafter\endgroup
4 〈+package | test〉\expandafter\ifx\csname ProvidesPackage\endcsname\relax
5 〈+package | test〉\else
6 \NeedsTeXFormat{LaTeX2e}
7 〈+package〉 \ProvidesPackage{localloc}%
8 〈+test〉 \ProvidesFile{localtst.tex}%
9 〈∗!package&!test〉

10 \ProvidesFile{localloc.dtx}%
11 〈/!package&!test〉
12 [1995/09/24 v1.1b %
13 Additional LaTeX Kernel Macros (local allocation)]
14 〈+package | test〉\fi

15 〈∗package〉

To allow the use of this file within a plain-TEX job, we have to change the
category code of the ‘at’ character @.
16 \expandafter\chardef\csname lcllc@at\endcsname=\catcode‘\@
17 \catcode‘\@=11 % \makeatletter

2.2 Accessing the muskip registers
Beside the well-known TEX registers, like \count or \box, there is another set of
registers which are used only in few macros. The \muskip registers are normally
used in math mode only and the coercion of the value in a \muskip register to an
integer (\count), dimension (\dimen), or glue (\glue) produces an error.

The unit of a \muskip value is 1 mu—there are 18 mu in 1 em of the current
font in math family 2. If you assign a value to a \muskip register, this value is
represented in the unit mu, not in pt. The dimension of the \muskip value is
computed, if this value is used by \mskip or \mkern.

To use a \muskip register as a replacement for a \count register, it is necessary
to do assignments, additions, and other operations in units of mu. If you want
to coerce an integer to a \muskip register, you have to get the value with \the
and add the keyword mu while scanning the number. To get the integer value of a
\muskip register, you can use the following macro \lcllc@cnvmutocnt.

\lcllc@cnvmutocnt The macro \lcllc@cnvmutocnt ist called with a \muskip register or a value in mu
units as its argument. It will expand to the integer value. To get the value of a
register, we first expand the value of this register to a list of tokens with TEX’s
\the primitive. Example: if the register has the value 3.4 mu, the expansion of
\the produces the tokens 312.12412m12u12.
18 \def\lcllc@cnvmutocnt#1{\expandafter\lcllc@delmukey\the#1}

After we have expanded the value of the register, it is necessary to strip of the
unit keyword mu and the fraction of the value. To do this, we have to use tokens
with category code 12 to match the expansion string produced by \the.
19 \begingroup \catcode‘\M=12 \catcode‘\U=12 \catcode‘\.=12
20 \lowercase{\endgroup
21 \def\lcllc@delmukey#1.#2MU{#1}}

5



2.3 Allocation registers
2.3.1 Registers defined in plain.tex

Plain-TEX’s allocation macros use a fixed set of count registers containing a set of
numbers with the highest allocated register number. To make the following macro
code more readable, alias names for these count registers are defined.
22 \countdef\count@ptr = 10
23 \countdef\dimen@ptr = 11
24 \countdef\skip@ptr = 12
25 \countdef\muskip@ptr = 13
26 \countdef\box@ptr = 14
27 \countdef\toks@ptr = 15
28 \countdef\read@ptr = 16
29 \countdef\write@ptr = 17
30 \countdef\mathfam@ptr = 18

plain.tex for TEX 3 introduces a new allocation command needing an additional
allocation count register. To simplify the code of this package with older versions
of plain.tex, a dummy count register is allocated and used.
31 \begingroup\expandafter\expandafter\expandafter\endgroup
32 \expandafter\ifx\csname newlanguage\endcsname\relax
33 \csname newcount\endcsname\language@ptr
34 \else
35 \countdef\language@ptr = 19
36 \fi

The allocation command for insertion uses another register, which is already
aliased as \insc@unt.

\countdef\insc@unt = 20 % = 19 in older versions of ‘plain.tex’

2.3.2 Additional Registers

For the new local allocation macros additional registers are needed containing
the boundaries for all types of locally allocated registers. Whereas all globally
allocated registers are located in the lower region of the register numbers (with the
exception of the set of registers needed for an insertion), locally allocated registers
are taken from the higher region of the register numbers—from top towards the
bottom.

To avoid using six additional count registers we use \muskip registers to save
the current lower boundary of the allocatable register region. These boundaries
are initialised either with 256 or the actual boundary of the insertion allocation
register.
37 \newmuskip\count@limit \count@limit = \the\insc@unt mu
38 \newmuskip\dimen@limit \dimen@limit = \the\insc@unt mu
39 \newmuskip\skip@limit \skip@limit = \the\insc@unt mu
40 \newmuskip\box@limit \box@limit = \the\insc@unt mu
41 \newmuskip\muskip@limit \muskip@limit = 256mu
42 \newmuskip\toks@limit \toks@limit = 256mu

To simplify the code of the following allocation macros and to save macro space,
two additional \muskip registers are allocated and initialised with the constants
16 and 256.

6



43 \newmuskip\cclvi@mu \cclvi@mu = 256mu
44 \newmuskip\xvi@mu \xvi@mu = 16mu

2.4 Allocation Macros for the “End User”
2.4.1 Global Allocation Macros

\newcount
\newdimen
\newskip

\newmuskip
\newbox

\newtoks
\newread

\newwrite
\newfam

\newlanguage

We have to replace the original macros in plain.tex by new ones to allow locally
allocated registers. Otherwise it will be possible that the two regions, the lower
one with globally allocated registers and the higher one with locally allocated
registers, will overlap resulting in a double use of the same register.

With the new macros it will be unnecessary to un-outer the plain.tex macros,
because the local allocation macros have to be non outer. Nonetheless we want to
use this package in conjunction with LATEX and therefore we have to define some
of them as non outer.

The top level macros use the low level macro \alloc@ which has the following
parameters: The boundaries of the lower and the higher region, the type of the
allocated register, a flag if we have to check on overlapping with insertion registers,
the TEX primitive to be used to define this register, and the user given control
sequence.
45 %\outer
46 \def\newcount {\alloc@\count@ptr \count@limit \count 1\countdef }
47 %\outer
48 \def\newdimen {\alloc@\dimen@ptr \dimen@limit \dimen 1\dimendef }
49 %\outer
50 \def\newskip {\alloc@\skip@ptr \skip@limit \skip 1\skipdef }
51 % \outer
52 \def\newmuskip {\alloc@\muskip@ptr \muskip@limit\muskip 0\muskipdef}
53 %\outer
54 \def\newbox {\alloc@\box@ptr \box@limit \box 1\chardef }
55 % \outer
56 \def\newtoks {\alloc@\toks@ptr \toks@limit \toks 0\toksdef }
57 % \outer
58 \def\newread {\alloc@\read@ptr \xvi@mu \read 0\chardef }
59 %\outer
60 \def\newwrite {\alloc@\write@ptr \xvi@mu \write 0\chardef }
61 %\outer
62 \def\newfam {\alloc@\mathfam@ptr\xvi@mu \fam 0\chardef }
63 % \outer
64 \def\newlanguage{\alloc@\lang@ptr \cclvi@mu \language0\chardef }

\newinsert needs additional code because this macro has to allocate a set of
\box, \count, \dimen, and \skip registers with the restriction that all registers
have to have the same number. \newinsert is redefined at the end of this file.

2.4.2 Local Allocation Macros

\lnewcount
\lnewdimen
\lnewskip

\lnewmuskip
\lnewbox

\lnewtoks

There is an equivalent set of macros to allocate registers locally. Instead of using
the low level macro \alloc@ it uses the macro \lalloc@ with the same set of
parameters.
65 \def\lnewcount {\lalloc@\count@ptr \count@limit \count 1\countdef }
66 \def\lnewdimen {\lalloc@\dimen@ptr \dimen@limit \dimen 1\dimendef }

7



67 \def\lnewskip {\lalloc@\skip@ptr \skip@limit \skip 1\skipdef }
68 \def\lnewmuskip{\lalloc@\muskip@ptr\muskip@limit\muskip 0\muskipdef}
69 \def\lnewbox {\lalloc@\box@ptr \box@limit \box 1\chardef }
70 \def\lnewtoks {\lalloc@\toks@ptr \toks@limit \toks 0\toksdef }

Local allocation macros for \read, \write streams, math \fam, language
numbers, or insertions are possible but not very useful because of the global nature
of these resources.

2.5 Low Level Allocation Macros
The allocation scheme used by the macros in plain.tex is simple:

• all allocations are global,

• register, math family, language, input/output stream numbers are allocated
using the lowest possible number, i.e., it is done from lower number to higher
numbers,

• the set of insertion registers (box, count, skip, and dimen), which have to
have the same register number, are allocated beginning from 255 to lower
numbers.

Contrary to this simple scheme this package uses numbers for locally allo-
cated registers from top to bottom interfering with the original insertion register
allocation scheme and the simple test for a register number overflow.

\lcllc@insnums Insertion registers are now allocated in a non-monotonous order using the lowest
possible number (because the allocation of the needed set of registers is done in a
global way). To allow the checking of overlapping of globally or locally allocated
registers with the registers used for insertions, the insertion register numbers are
saved as a list in \lcllc@insnums. Each entry in this list is saved as \do〈n〉.; the
list is initialised as empty.
71 \def\lcllc@insnums{}

\lcllc@checkins Whenever a new box, count, skip, or dimen register is allocated it has to be
checked first, if the next possible free register is already allocated for an insertion.

To detect a collision between a possibly free register number and the set of
insertion registers, the macro \lcllc@checkins is called with the register number
to be tested in \allocationnumber. The argument of this macro has to be either 1
or −1 and is used to get the next register number to be tested against the insertion
number list if an additional iteration is needed. The result is a register number in
\allocationnumber which is not used for an insertion. (Note: Nonetheless it can
be an out-of-region register number of an already used register!)
72 \def\lcllc@checkins#1{%
73 \begingroup

After opening a new group, the macro \do is defined to read the next insertion
number delimited by a simple dot. It then tests this number against the current
\allocationnumber and if the register numbers are equal, \allocationnumber
is advanced by the given argument (which is 1 or −1).

To avoid a global change of \allocationnumber, a group hack with expansion
is used: If the list \lcllc@insnums is expanded with this definition of \do, the

8



result is empty if the register number is not used for an insertion. Otherwise it
expands to the \advance command followed by an additional lcllc@checkins
(which has to be protected by \noexpand) to start another iteration with the
changed \allocationnumber.
74 \def\do##1.{%
75 \ifnum##1=\allocationnumber
76 \advance\allocationnumber#1\relax
77 \noexpand\lcllc@checkins{#1}%
78 \fi}%

The following expanded definition text of \x contains code to close the group
and the expansion of \lcllc@insnums, which is either empty or contains the
change of \allocationnumber and an iterative call of \lcllc@checkins. After
the definition is completed, the code is executed which closes the group.
79 \edef\x{\endgroup \lcllc@insnums}%
80 \x}

\alloc@ \alloc@ is the low level macro for global allocation, which is called with six argu-
ments. The macro itself only uses the first four argument: The two boundaries,
the item type to be allocated, and a flag if this item is propably used for an inser-
tion. The remaining two arguments, the TEX primitive and the control sequence
to assign the allocated number is used by \lcllc@def.
81 \def\alloc@#1#2#3#4{%

In the first step we assign the boundary of the lower region for this item type to
\allocationnumber and increment it by one.
82 \allocationnumber#1%
83 \advance\allocationnumber\@ne

If this item type is used by insertion, we have to check for collision with the
\lcllc@checkins macro. After the execution of this macro, \allocationnumber
contains the next free number to be used for allocation. This number is assigned
globally to the register containing the boundary.
84 \ifnum#4=\@ne \lcllc@checkins\@ne \fi
85 \global#1\allocationnumber

We now have found an unused register. Nonetheless it is possible that the register
number is either not in the range of existing register number or it is used for a
locally allocated register. \ch@ck is used to test these things.
86 \ch@ck#1#2#3%

At the end the 〈control sequence〉 is defined using the found \allocationnumber.
87 \lcllc@def\global{}#3}

\lalloc@ \lalloc@ is the low level macro for local allocation. The definition of this macro
a copy of \alloc@ with some small changes.
88 \def\lalloc@#1#2#3#4{%

In the first step we assign the boundary of the higher region and decrement it by
one. Because the higher boundary is saved in a \muskip register, we have to use
\lcllc@cnvmutocnt to get the boundary value.
89 \allocationnumber\lcllc@cnvmutocnt#2%
90 \advance\allocationnumber\m@ne

9



The check for insertion number collisions is called with −1 to decrement the regis-
ter number to get the next free register number. The \allocationnumber is then
assigned locally to the \muskip register containing the boundary.
91 \ifnum#4=\@ne \lcllc@checkins\m@ne \fi
92 #2\the\allocationnumber mu %

The check for an already used globally allocated register or a range underflow is
needed, too.
93 \ch@ck#1#2#3%

At the end the 〈control sequence〉 is defined using the found \allocationnumber.
94 \lcllc@def\relax{(local)}#3}

\ch@ck The test macro \ch@ck for a collision of the globally and locally allocated registers
from plain.tex has to be changed because the higher boundary is given as a
\muskip value instead of a normal integer.
95 \def\ch@ck#1#2#3{%
96 \ifnum#1<\lcllc@cnvmutocnt#2\relax \else
97 \errmessage{No room for a new #3}%
98 % \allocationnumber\m@ne
99 \fi}

\lcllc@def \lcllc@def is used to assign the found \allocationnumber to the 〈control
sequence〉 using the TEX primitive. Additionally an entry is written to the log
file.

100 \def\lcllc@def#1#2#3#4#5{%
101 #1#4#5=\allocationnumber
102 \wlog{\string#5#2=\string#3\the\allocationnumber}}

2.5.1 Low Level Insertion Allocation Macros

Insertions need a set of registers with the same register number. To find a new
register number when allocating an insertion, we have to get the maximum of all
boundaries used for an insertion.

\lcllc@getmax \lcllc@getmax is used to assign \allocationnumber to the maximum of
\allocationnumber and its argument.

103 \def\lcllc@getmax#1{%
104 \ifnum#1<\allocationnumber \else
105 \allocationnumber#1\advance\allocationnumber\@ne
106 \fi}

\newinsert \newinsert globally allocates a set of registers used for an insertion.
107 \outer\def\newinsert{%

First we have to find the maximum of all globally allocated register number used
for an insertion. We start by setting \allocationnumber to −1 . . .

108 \allocationnumber\m@ne

. . . and get the maxmimum of the boundaries for count, dimen, skip, and box
registers.

109 \lcllc@getmax\count@ptr \lcllc@getmax\dimen@ptr
110 \lcllc@getmax\skip@ptr \lcllc@getmax\box@ptr

10



Then we have to check if this \allocationnumber is already used for another
insertion.

111 \lcllc@checkins\@ne

At last we have to check if this \allocationnumber is used for one of the locally
allocated registers.

112 \ch@ck\allocationnumber\count@limit\count
113 \ch@ck\allocationnumber\dimen@limit\dimen
114 \ch@ck\allocationnumber\skip@limit\skip
115 \ch@ck\allocationnumber\box@limit\box

The found register number for insertions is then (globally) inserted into the list of
insertion numbers.

116 \begingroup
117 \let\do\relax
118 \xdef\lcllc@insnums{\do\the\allocationnumber.\lcllc@insnums}%
119 \endgroup

At the end the 〈control sequence〉 is defined using the found \allocationnumber.
120 \lcllc@def\global{}\insert\chardef}

The register \insc@unt which is used to contain the boundary number for
insertion registers in the original plain.tex macro is not used anymore.

Finally, the category code of the ‘at’ character @ is reset to its original value.
121 \catcode‘\@=\lcllc@at

122 〈/package〉

References
[1] Donald E. Knuth, The TEXbook, Addison-Wesley Publ., Reading, Mass., Juni

1991.

[2] File plain.tex, version 3.14159, March 1995.

11


