
bitelist.sty
—

“Splitting” a List at a List Inside

in TEX’s Mouth∗

Uwe Lück†

March 29, 2012

Abstract

bitelist.sty provides commands for “splitting” a token list at the first occur-
rence of a contained token list (i.e., for given σ, τ , return β and shortest
α s.t. τ = ασβ). As opposed to other packages providing similar fea-
tures, (i) the method uses TEX’s mechanism of reading delimited macro
parameters; (ii) the splitting macros work by pure expansion, without
assignments, provided the macro doing the search has been defined before
processing (e.g., a file); (iii) instead of using one macro for a “substring”
test and another one to replace the “substring”—which includes extract-
ing corresponding prefix and suffix—, the same macro that detects the
occurrence returns the split; (iv) ε-TEX is not required. (And LATEX is
not required.)

This improves the author’s fifinddo.sty (v0.51—and may once be used
there). An elaborated approach (additionally to a simpler one) is provided
that does not loose outer braces of prefix/suffix.

“Substring” detection and “string” replacement are (implicitly) in-
cluded with respect to certain representations of characters by tokens.
Counting occurrences and “global” replacement could be achieved by ap-
plying the operation to earlier results, etc.—so this approach seems to be
“fundamental” for a certain larger set of list analysis tasks.

The documentation aims to prove the correctness of the methods with
mathematical rigour.

Related packages: datatool, stringstrings, ted, texapi, xstring

Keywords: macro programming, text filtering, substrings

∗This document describes version v0.1 of bitelist.sty as of 2012/03/29.
†http://contact-ednotes.sty.de.vu

1

http://ctan.org/pkg/e-tex
http://ctan.org/pkg/fifinddo
http://ctan.org/pkg/datatool
http://ctan.org/pkg/stringstrings
http://ctan.org/pkg/ted
http://ctan.org/pkg/texapi
http://ctan.org/pkg/xstring
http://contact-ednotes.sty.de.vu

CONTENTS 2

Contents

1 Task, Background Reasoning, and Usage 2
1.1 The Task Quite Precisely . 2
1.2 Idea of Solution . 3
1.3 When We Don’t Know . 3
1.4 The Trick . 4
1.5 Installing and Calling . 5

2 Implementation Part I 5
2.1 Package File Header (Legalize) 5
2.2 Proceeding without LATEX . 6
2.3 Basic Parsing (No Braces) . 6
2.4 Simple Conditionals . 7
2.5 Passing Results Completely—No Braces 7

3 Example Applications 8
3.1 Splitting at Space . 8
3.2 Splitting at Comma . 9

4 Keeping Braces: Reasoning 9

5 Implementation Part II 10
5.1 Keeping Braces . 10
5.2 Leaving the Package File . 10
5.3 VERSION HISTORY . 11

6 Examples/Tests 11

7 The Package’s Name 12

1 Task, Background Reasoning, and Usage

1.1 The Task Quite Precisely

Perhaps I should not have written “splitting” before, see Section 7 why I did so
though. Actually:

At first we are dealing with token lists τ and σ without braces (unless their
category code has been changed appropriately) that can be stored as macros
without parameter or in token list registers. We want to find out whether τ
contains σ (“as a subword”) in the sense that there are such token lists α and
β that τ is composed as ασβ, i.e.,

τ = ασβ

and in this case we want to get α and β of this kind with α being the shortest
possible. I.e., if there are such γ and δ that τ is composed as γσδ, α must be

1 TASK, BACKGROUND REASONING, AND USAGE 3

contained as a “prefix” in γ, i.e., γ is composed as αη for some token list η. The
token lists α, β, γ, δ, η, σ, and τ are allowed to be empty throughout.

The task will be extended for some braces in Section 4.

1.2 Idea of Solution

TEX’s mechanism of expanding macros (TEXbook Chapter 20) at least has a
built-in mechanism to return such α and β provided τ contains σ. Define

\def〈cmd〉#1σ#2θ{〈replace-def 〉}

where θ must be a token list (maybe of a single token) that won’t occur in τ .1

This is a limitation of the approach: It works for sets of such τ only that do not
contain any of a small set of tokens or combinations of them. (bitelist will use
\BiteSep, \BiteStop, and \BiteCrit, or any other three that can be chosen.)

On the other hand, TEX’s category codes (TEXbook Chapter 7) can ensure
this quite well. E.g., we may assume that input “letters” always have category
code 11 (or 12, or one of them), and for θ we can choose letters with different
category codes such as 3. Without such tricks, you may often assume that
nobody will input certain “silly” commands such as \BiteStop. (But it may
become difficult when you use a package for replacement macros for generating
its own documentation . . .)

With a 〈cmd〉 as defined above, TEX will

expand 〈cmd〉τθ to 〈replace〉,

where 〈replace〉 will be the result of replacing (a) all occurrences of #1 in
〈replace-def 〉 by α as wanted and (b) all occurrences of #2 in 〈replace-def 〉 by
β as wanted. I.e., 〈cmd〉 returns α as its first argument and β as its second
argument. The reason is that 〈cmd〉’s first parameter is delimited by σ and the
second one by θ in the sense of The TEXbook p. 203. Our requirement to get
the shortest α for the composition of τ as ασβ is met because TEX indeed looks
for the first occurrence of σ at the right of 〈cmd〉.

1.3 When We Don’t Know . . .

When σ does not occur in τ and we present τθ to 〈cmd〉 as before, TEX will
throw an error saying “Use of 〈cmd〉 doesn’t match its definition.” When the
purpose is “substring detection” only, without returning β, many packages have
solved the problem by issuing something like

〈cmd〉τσθ
1I am still following others in confusing source code and tokens. I have better ideas, but

must expand on them elsewhere. Writing \def rather indicates that it is source code, then σ
etc. should be replaced by strings that are converted into tokens σ etc. 〈cmd〉 sometimes is a
string starting with an escape character, or it is an active character; but sometimes it rather
is an “active” token converted from such an escape string or an active character.

1 TASK, BACKGROUND REASONING, AND USAGE 4

Then (still provided θ does not occurr in τ) 〈cmd〉’s second argument is empty
exactly if σ occurs in τ . This method has, e.g., been employed in LATEX’s
internal \in@ mechanism (e.g., for dealing with package options) and by the
substr package. datatool has used the latter’s substring test (for σ) before calling
a macro for replacing (σ by another token list, perhaps thinking of character
tokens).

This way you get the wanted α as the first macro argument immediately
indeed. An obstacle for getting β is that 〈cmd〉’s second argument now contains
an occurrence of σ that is not an occurrence in τ . In fifinddo.sty I didn’t have
a better idea than using another macro to remove the “dummy text” from the
second argument. I considered it an advantage as compared with datatool that
one macro could do this for all replacement jobs, while datatool uses two macros
with σ as a delimiter for each σ to be replaced.

But still, fifinddo has used two macros for each replacement, the extra one
being for presenting τ to 〈cmd〉, using a job identifier. This could be improved
within fifinddo, but I could never afford to take the time for this.

1.4 The Trick

The solution presented here is not very ingenious, many students would have
found it in an exercise for a math course. My personal approach was looking at
\GetFileInfo from LATEX’s doc package. There they try to get two occurrences
of a space token this way:2

\def\@tempb#1 #2 #3\relax#4\relax{%

and \@tempb is called as

\@tempbτ\relax? ? \relax\relax

or with τ = 〈list〉

\@tempb〈list〉\relax? ? \relax\relax

The final \relax may not be removed, but for doc it doesn’t harm. It harms
for me when I don’t want to have a \relax in a .log file list. \empty would be
better, however . . .

The idea is to use a three-parameter macro for that single occurrence of
σ. We introduce a “dummy separator” ζ (or 〈sep〉, \BiteSep) between τ and
the “dummy text” and a “criterion” ρ (= 〈crit〉, \BiteCrit) for determining
occurrence of σ (= 〈find〉) in τ (= 〈list〉). Neither ζ nor ρ must occur in τ . We
will have definitions about as

\def〈cmd〉#1σ#2ζ#3θ{〈replace-def 〉}

or

\def〈cmd〉#1〈find〉#2〈sep〉#3〈stop〉{〈replace-def 〉}
2We are undoubling the hash marks inside the definition text of \GetFileInfo.

http://ctan.org/pkg/substr
http://ctan.org/pkg/datatool
http://ctan.org/pkg/fifinddo
http://ctan.org/pkg/doc

2 IMPLEMENTATION PART I 5

and τ will be presented with context

〈cmd〉τζσρζθ or 〈cmd〉〈list〉〈sep〉〈find〉〈crit〉〈sep〉〈stop〉

This ensures that 〈cmd〉 finds its parameter delimiters σ, ζ, and θ, in this order.
σ occurs in τ exactly if the second argument of 〈cmd〉 is ρ, and in this case the
first occurrence of the second parameter delimiter ζ delimits τ . Then 〈cmd〉’s
first argument is α, and the second one is β, as wanted.
〈cmd〉’s third parameter is delimited by the final θ (\BiteStop). When σ

occurs in τ , 〈cmd〉’s third argument starts after the first of the two ζ, so it is
σρζ. It is just ignored, this way 〈cmd〉 removes all the “dummy” material after
τ . When σ does not occur in τ , we ignore all of its arguments, and the macro
that invoked 〈cmd〉 must decide what to do next, e.g., keeping τ elsewhere for
presenting it to another parsing macro resembling 〈cmd〉.

1.5 Installing and Calling

The file bitelist.sty is provided ready, installation only requires putting it some-
where where TEX finds it (which may need updating the filename data base).3

Below the \documentclass line(s) and above \begin{document}, you load
bitelist.sty (as usually) by

\usepackage{bitelist}

between the \documentclass line and \begin{document}; or by

\RequirePackage{bitelist}

within a package file, or above or without the \documentclass line. Moreover,
the package should work without LATEX and may be loaded by

\input bitelist.sty

Actually, using the package for macro programming requires understanding of
pp. 20f. of The TEXbook. On the other hand, the package may be loaded
(without the user noticing it) automatically by a different package that uses
programming tools from the present package.

2 Implementation Part I

2.1 Package File Header (Legalize)

1 \def\filename{bitelist} \def\filedate{2012/03/29}

2 \def\fileversion{v0.1} \def\fileinfo{split lists in TeX’s mouth (UL)}

3 %% Copyright (C) 2012 Uwe Lueck,

4 %% http://www.contact-ednotes.sty.de.vu

5 %% -- author-maintained in the sense of LPPL below --

3http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

2 IMPLEMENTATION PART I 6

6 %%

7 %% This file can be redistributed and/or modified under

8 %% the terms of the LaTeX Project Public License; either

9 %% version 1.3c of the License, or any later version.

10 %% The latest version of this license is in

11 %% http://www.latex-project.org/lppl.txt

12 %% There is NO WARRANTY - this rather is somewhat experimental.

13 %%

14 %% Please report bugs, problems, and suggestions via

15 %%

16 %% http://www.contact-ednotes.sty.de.vu

17 %%

2.2 Proceeding without LATEX

Some tricks from Bernd Raichle’s ngerman.sty—I need LATEX’s \Provides-
Package for fileinfo, my package version tools. With readprov.sty, it issues
\endinput, close conditional before:

18 \begingroup\expandafter\expandafter\expandafter\endgroup

19 \expandafter\ifx\csname ProvidesPackage\endcsname\relax \else

20 \edef\fileinfo{\noexpand\ProvidesPackage{\filename}%

21 [\filedate\space \fileversion\space \fileinfo]}

22 \expandafter\fileinfo

23 \fi

24 \chardef\atcode=\catcode‘\@

25 \catcode‘\@=11 % \makeatletter

Providing LATEX’s \@firstoftwo and \@secondoftwo:

26 \long\def\@firstoftwo #1#2{#1}

27 \long\def\@secondoftwo#1#2{#2}

2.3 Basic Parsing (No Braces)

\BiteMake{〈def 〉}{〈cmd〉}{〈find〉} provides the parameter text (TEXbook
p. 203) for defining (by 〈def 〉) a macro 〈cmd〉 that will search for 〈find〉:

28 \def\BiteMake#1#2#3{#1#2##1#3##2\BiteSep##3\BiteStop}

With \BiteFindByIn{〈find〉}{〈cmd〉}{〈list〉} , you can use a 〈cmd〉 (perhaps
defined by \BiteMake) in order to search 〈find〉 in 〈list〉. This is expandable as
promised:

29 \def\BiteFindByIn#1#2#3{%

30 #2#3\BiteSep#1\BiteCrit\BiteSep\BiteStop}

Preparing a possible \edef as 〈def 〉:

31 \let\BiteSep\relax \let\BiteStop\relax

http://ctan.org/pkg/ngerman
http://ctan.org/pkg/fileinfo

2 IMPLEMENTATION PART I 7

And this is important in any case for correct testing of occurrence:4

32 \catcode‘\Q=7 \let\BiteCrit=Q \catcode‘\Q=11

Perhaps you could increase safety of tests by using something similar to the
funny Q for \BiteSep and \BiteStop. However, this would additionally require
reimplementation of the macros for keeping braces (Section 4) using \edef.

2.4 Simple Conditionals

By \BiteMakeIfOnly{〈def 〉}{〈cmd〉}{〈find〉} , you can make a command
〈cmd〉 that with

\BiteFindByIn{〈find〉}{〈cmd〉}{〈list〉}{〈yes〉}{〈no〉}

chooses 〈yes〉 if 〈find〉 occurs in 〈list〉 and 〈no〉 otherwise.

33 \def\BiteMakeIfOnly#1#2#3{\BiteMake{#1}{#2}{#3}{\BiteIfCrit{##2}}}

\BiteIfCrit{〈suffix 〉}{〈yes〉}{〈no〉} is the basic test for occurrence of 〈find〉
in 〈list〉:

34 \def\BiteIfCrit#1{\ifx\BiteCrit#1\expandafter\@secondoftwo

If 〈cmd〉’s second argument—same as \BiteIfCrit’s first argument—is empty,
\BiteCrit is compared with \expandafter, so 〈yes〉 is chosen. That is correct,
it happens when 〈find〉 is a suffix of 〈list〉.

35 \else \expandafter\@firstoftwo \fi }

2.5 Passing Results Completely—No Braces

So the previous \BiteMakeIfOnly generates pure tests on occurrence, giving
away information about prefix and suffix. It may be considered a didactical
step fostering understanding of the following. When, by contrast

\BiteMakeIf{〈def 〉}{〈cmd〉}{〈find〉}

has been issued, a later

\BiteFindByIn{〈find〉}{〈cmd〉}{〈list〉}{〈list〉}{〈yes〉}{〈no〉} (∗)

will expand to

〈yes〉{〈prefix 〉}{〈find〉}{〈suffix 〉}

if 〈list〉 is composed as 〈prefix 〉〈find〉〈suffix 〉 and 〈prefix 〉 is the shortest α such
that there is some β with 〈list〉 = α〈find〉β. Otherwise, (∗) will expand to

〈no〉{〈list〉}

This gives all the information available. For actual applications, it may
be too much, and the macro programmer may do something in between of
\BiteMakeIfOnly and \BiteMakeIf:

4The idea for the “funny Q” is from the ifmtarg package.

http://ctan.org/pkg/ifmtarg

3 EXAMPLE APPLICATIONS 8

36 \def\BiteMakeIf#1#2#3{%

37 \BiteMake{#1}{#2}{#3}##4##5##6{%

In the replacement text, we first do the same as with \BiteMakeIfOnly:

38 \BiteIfCrit{##2}%

What follows is new. 〈cmd〉’s third argument is ignored. The fourth keeps the
original 〈list〉. 〈yes〉 is 〈cmd〉’s fifth and 〈no〉 is its sixth argument.

39 {##5{##1}{#3}{##2}}% %% if #3 in ##4

40 {##6{##4}}% %% otherwise

41 }%

42 }

In (∗), 〈list〉 has been doubled. That was no mistake. It is due to a shortcoming
of \BiteFindByIn. With

\BiteFindByInIn{〈find〉}{〈cmd〉}{〈list〉}{〈yes〉}{〈no〉}

you get the same result as with (∗):

43 \def\BiteFindByInIn#1#2#3{\BiteFindByIn{#1}{#2}{#3}{#3}}

TODO not sure about command names yet

3 Example Applications

3.1 Splitting at Space

This work actually arose from modifying \GetFileInfo as provided by LATEX’s
doc package so that it would deal reasonably with “incomplete” file info—for the
nicefilelist package. \GetFileInfo works best when the file info contains at least
two blank spaces. But how many are there indeed?—And I wanted to do it ex-
pandably: while \GetFileInfo issues definitions of \filedate, \fileversion,
and \fileinfo, date, version, and info should be passed as macro arguments.

\BiteIfSpace tries splitting at the next blank space passes results:

44 \BiteMake{\def}{\BiteIfSpace}{ }#4#5#6{%

45 \BiteIfCrit{#2}{#5{#1}{#2}}{#6{#4}}}

The difference to the \BiteMakeIf construction is that we do not pass 〈find〉,
the space—it’s not essential. (TODO names may change . . .)

Now

\BiteFindByInIn{ }{\BiteIfSpace}{〈list〉}{〈yes〉}{〈no〉}

will pass prefix/suffix to 〈yes〉 or 〈list〉 to 〈no〉. If this is needed frequently, here
is a shorthand \BiteGetNextWord{〈list〉}{〈yes〉}{〈no〉} :

46 \def\BiteGetNextWord{\BiteFindByInIn{ }\BiteIfSpace}

See a test in bitedemo.tex (Section 6).

http://ctan.org/pkg/doc
http://ctan.org/pkg/nicefilelist

4 KEEPING BRACES: REASONING 9

3.2 Splitting at Comma

. . . left as an exercise to the reader . . .

4 Keeping Braces: Reasoning

Now we want to generalize task (Section 1.1) and solution (Section 1.4) for the
case that τ = 〈list〉 has (balanced) braces (with category codes for argument
delimiters), while σ = 〈find〉 still has not (does not work with our method). So
with τ = ασβ, α (“prefix”) or β (“suffix”) or both may contain braces. But we
consider another restriction: braces must be balanced in α and in β, we don’t
try parsing inside braces (as opposed to the search for asterisks in Appendix D
of The TEXbook).

According to TEXbook p. 204, when a macro 〈cmd〉 finds an argument
formed as {〈tokens〉}, in 〈cmd〉’s replacement text only 〈tokens〉 is used, i.e.,
outer braces are removed. So when α = {〈tokens〉}, a parser 〈cmd〉 as defined
by our methods above will return 〈tokens〉 instead of {〈tokens〉}—likewise for
β. We are now trying to keep outer braces in prefix/suffix by a more elaborate
method.

The idea is to present τ = 〈list〉 with context5

〈cmd〉\empty〈list〉〈stop〉〈sep〉〈find〉〈crit〉〈sep〉〈stop〉

or in the notation of Section 1.4

〈cmd〉\emptyτθζσρζθ

Then, if 〈find〉 occurs in 〈list〉, we must remove the \empty from the prefix that
we get with the earlier method (easy) and 〈stop〉 from the suffix (tricky, similar
problem recurs). Using old θ for a new purpose works here because 〈cmd〉 will
look for θ only when it has found ζ before.

Mere testing for occurrence is not affected.

\BiteMakeIfOnly and \BiteFindByIn

still can be used. We provide an improved version of

\BiteMakeIf (\BiteMakeIfBraces)

and of

\BiteFindInIn (\BiteFindInBraces).

5Perhaps I am confusing \empty and the token list containing just \empty here?

5 IMPLEMENTATION PART II 10

5 Implementation Part II

5.1 Keeping Braces

\BiteFindByInBraces{〈find〉}{〈cmd〉}{〈list〉}{〈yes〉}{〈no〉}

varies \BiteFindByInIn according to the previous:

47 \def\BiteFindByInBraces#1#2#3{%

48 #2\empty#3\BiteStop\BiteSep#1\BiteCrit\BiteSep\BiteStop{#3}}

Such a 〈cmd〉 can be made by \BiteMakeIfBraces{〈def 〉}{〈cmd〉}{〈find〉} :

49 \def\BiteMakeIfBraces#1#2#3{%

50 \BiteMake{#1}{#2}{#3}##4##5##6{%

51 \BiteIfCrit{##2}%

〈no〉 works as before. For 〈yes〉, first the \empty in the prefix is expanded for
vanishing. \BiteTidyI and \BiteTidyII continue tidying.

52 {\expandafter \BiteTidyI %% if #3 in ##4

53 \expandafter{##1}% %% prefix

Another \empty avoids that removal of \BiteStop in suffix by \BiteTideII

removes outer braces:

54 {\BiteTidyII\empty##2}% %% suffix

55 {#3}% %% find

56 {##5}}% %% yes

57 {##6{##4}}% %% otherwise

58 }%

59 }

\BiteTidyI{〈prefix 〉}{〈suffix 〉} first expands \BiteTidyII for removing
\BiteStop in 〈suffix 〉. \empty from \BiteFindByInBraces remains and is ex-
panded next for vanishing. Finally, \BiteTidied reorders arguments for oper-
ation of 〈yes〉:

60 \def\BiteTidyI#1#2{%

61 \expandafter\expandafter\expandafter \BiteTidied

62 \expandafter\expandafter\expandafter {#2}{#1}}

63 \def\BiteTidyII#1\BiteStop{#1}

64 \def\BiteTidied#1#2#3#4{#4{#2}{#3}{#1}}

5.2 Leaving the Package File

65 \catcode‘\@=\atcode

66 \endinput

6 EXAMPLES/TESTS 11

5.3 VERSION HISTORY

67 v0.1 2012/03/26 started

68 2012/03/27 continued, restructured

69 2012/03/28 continued, separate sections for "Mere Occurrence"

70 vs. ...; keeping braces, \BiteIfCrit

71 2012/03/29 proceeding without LaTeX corrected, restructured

72

6 Examples/Tests

You should find a separate file bitedemo.tex with examples. It may be run
separately with tex (Plain TEX)—demonstrating that bitelist is “generic”, then
finish by entering \bye. With “latex bitedemo.tex”, end the job by entering
\stop. Expandability is demonstrated by the \BiteFind commands running
with \typeout.

\def\filename{bitedemo.tex} \def\filedate{2012/03/29}

\def\fileinfo{demonstrating/testing bitelist.sty (UL)}

\expandafter\ifx\csname ProvidesPackage\endcsname\relax \else

\edef\bitedemolatexstart{%

\noexpand\ProvidesFile{\filename}%

[\filedate\space\fileinfo]%

\noexpand\RequirePackage{bitelist}}

\expandafter\bitedemolatexstart

\fi

\ifx\BiteMakeIf\undefined \input bitelist.sty \fi

\ifx\typeout\undefined

\def\typeout{\immediate\write17}

\newlinechar‘^^J

\fi

\def\splitted #1#2#3{>>#1|#2|#3<<}

\def\unsplitted#1{>>#1<<}

\def\spacetocomma#1#2{>>#1,#2<<}

\BiteMakeIfOnly {\def}{\occursyesno}{no}

\BiteMakeIf {\def}{\noshowsplit}{no}

\BiteMakeIfBraces{\def}{\noShowSplit}{no}

\typeout{^^J

\BiteFindByIn {no}{\occursyesno}

{bonobo}{YES!}{NO!}

\BiteFindByIn {no}{\noshowsplit}

{bonobo}{bonobo}{\splitted}{\unsplitted}

\BiteFindByInIn{no}{\noshowsplit}

{bonobo}{\splitted}{\unsplitted}

^^J

\BiteFindByIn {no}{\occursyesno}

7 THE PACKAGE’S NAME 12

{bobobo}{YES!}{NO!}

\BiteFindByIn {no}{\noshowsplit}

{bobobo}{bobobo}{\splitted}{\unsplitted}

\BiteFindByInIn{no}{\noshowsplit}

{bobobo}{\splitted}{\unsplitted}

^^J

\BiteFindByInBraces{no}{\noShowSplit}

{{bo}no{bo}}{\splitted}{\unsplitted}

^^J

\BiteGetNextWord{bo no bo}{\spacetocomma}{\unsplitted}

\BiteGetNextWord{bo nobo} {\spacetocomma}{\unsplitted}

\BiteGetNextWord{bonobo} {\spacetocomma}{\unsplitted}

^^J}

\endinput

7 The Package’s Name

This package deals with TEX’s expansion mechanism. In Knuth’s metaphor,
this is TEX’s mouth. I am not entirely sure, I have never understood it, or I
have understood it only for a few days or hours. However, the package deals
with “Lists in TEX’s Mouth” as described in Alan Jeffrey’s 1990 TUGboat paper
(Volume 11, No. 2, pp. 237–245).6

“Splitting” in title and abstract is an attempt to describe the package briefly
without speaking Mathematicalese. It roughly refers to certain string functions
in various programming languages7 with “split” in their name. However, there
strings are splitted at separators such as commas. I am thinking here that a
comma is a certain string “,”, and this can be generalized to “splitting” at any
substring. With TEX, the analogues are (a) the token with the character code
of the comma and category code 12, or the token list consisting of this single
token,—and (b) other lists of tokens . . .

Anyway, calling a triple (α, σ, β) of token lists such that τ = ασβ a “split” of
τ is not necessarily a bad idea. Moreover, the blank space example (Section 3.1)
is very close to the original idea of splitting at separators, a blank space is about
as common as a separator as the comma is.

Finally, according to en.wiktionary.org, the Proto-Indo-European origin
of “to bite” just means “to split.”8 So in TEX’s mouth, splitting and biting is
the same.

6tug.org/TUGboat/tb11-2/tb28jeffrey.pdf
7en.wikipedia.org/wiki/String_functions#split
8en.wiktionary.org/wiki/bite#Etymology

http://tug.org/TUGboat/tb11-2/tb28jeffrey.pdf
http://en.wikipedia.org/wiki/string functions
http://en.wiktionary.org
http://en.wiktionary.org/wiki/bite
http://tug.org/TUGboat/tb11-2/tb28jeffrey.pdf
http://en.wikipedia.org/wiki/String_functions#split
http://en.wiktionary.org/wiki/bite#Etymology

	Task, Background Reasoning, and Usage
	The Task Quite Precisely
	Idea of Solution
	When We Don't Know …
	The Trick
	Installing and Calling

	Implementation Part I
	Package File Header (Legalize)
	Proceeding without LaTeX
	Basic Parsing (No Braces)
	Simple Conditionals
	Passing Results Completely—No Braces

	Example Applications
	Splitting at Space
	Splitting at Comma

	Keeping Braces: Reasoning
	Implementation Part II
	Keeping Braces
	Leaving the Package File
	VERSION HISTORY

	Examples/Tests
	The Package's Name

