
csvtools v1.24 : A LATEX2ε Package Providing

Access to Data Saved in a CSV File

Nicola Talbot

3rd July 2007

Contents

1 Introduction 2

2 Mail Merging and Similar Applications 3

3 Converting data in a CSV file into a tabular environment 4

4 Converting CSV file into longtable environment 7

5 Associated Counters 8

6 Cross-Referencing 9

7 Saving Entries 12

8 Pie Charts (csvpie.sty) 14

9 Sorting Data (csvsort.sty) 16

10 The csvtools.pl Perl Script 18
10.1 Notes . 19

11 Bugs/Drawbacks/“Features” 20

12 Contact Details 21

Index 21

List of Examples

1 Mail Merging 3

2 Multiple Figures 4

3 Mail Merging using \field 4

4 Aligning Data from a CSV file 5

1

5 Adding Lines 5

6 Added Complexity 6

7 Using a longtable environment 7

8 Stripy Table 8

9 More Mail Merging 8

10 Labelling within \applyCSVfile 9

11 Labelling within \applyCSVfile 9

12 Labelling within \CSVtotabular 10

13 Labelling within \CSVtotabular 10

14 Saving Entries 12

15 A Pie Chart 15

16 csvtools.pl — Aligning Data 19

1 Introduction

The csvtools package allows you to repeatedly perform a set of LATEX commands
on data in each row of a comma separated variable (CSV) file. This can be used
for mail merging, generating tables etc.

As from version 1.2, you can specify a different separator. To change the
separator, use the command:

\setcsvseparator{〈separator〉}\setcsvseparator

For example, if your data is separated by colons instead of commas, do:

\setcsvseparator{:}

If your separator occurs within an entry, the entry must be enclosed in double
quotes, for example:

Name,Address,Telephone

A.N. Other,"1 The Street,The Town",0123456789

Be careful of TEX special characters occuring within a CSV file, for example:

Name,Address,Telephone

Jack \& Jill,"2 The Street,The Town",0123456789

2

2 Mail Merging and Similar Applications

\applyCSVfile[〈n〉]{〈filename〉}{〈text〉}\applyCSVfile

\applyCSVfile*[〈n〉]{〈filename〉}{〈text〉}

Letters can be generated using data given in each line from 〈filename〉. If the
CSV file contains a header row, the unstarred version of \applyCSVfile should
be used, otherwise the starred version \applyCSVfile* should be used. The
optional argument 〈n〉 specifies on which line the actual data (not header line)
starts. The unstarred version defaults to line 2 (the header row is always assumed
to be on line 1) and the starred version defaults to 1.

With the unstarred version, the entries in the header row are used to generate
commands of the form \insert〈identifier〉1 to access corresponding elements in\insert...

the row currently being processed. For example, suppose the first line of the CSV
file looks like:

Name,Address,Time,Date

then the commands \insertName, \insertAddress, \insertTime and \insertDate
are created, allowing you to use the entries in the first, second, third and fourth
columns of the current row. If the header text contains non-alphabetical char-
acters, e.g. Full Name, then you will need to use \insertbyname{〈text〉}, e.g.\insertbyname

\insertbyname{Full Name}.
Alternatively, you can use the \field{〈col〉} command, where 〈col〉 is the\field

column number of the entry, so \field{1} indicates the first entry in the current
row and \field{2} indicates the second entry in the current row.

Example 1 (Mail Merging)

Suppose there is a file called details.csv that has the following contents:

Name,Address,Time,Date

Miss A. Person,1 The Road\\The Town\\AB1 2XY,15.00,4th May 2004

Mr A. N. Other,2 The Road\\The Town\\AB1 2XY,15.30,11th May 2004

then the following code can be used to generate a letter for each person in the
CSV file2:

\applyCSVfile{details.csv}{%

\begin{letter}{\insertName\\\insertAddress}

\opening{Dear \insertName}

You are invited to an interview at \insertTime\ on the \insertDate.

\closing{Yours Sincerely}

\end{letter}}

Note that you could also use \insertbyname{Name} etc instead of \insertName
etc. Also note that you need to specify the file extension when specifying the
filename.

1See Note 1 in Section 11
2Remeber to use a letter type of class file

3

Example 2 (Multiple Figures)

Suppose sample3.csv looks like:

File,Caption

circle.ps,A Circle

rectangle.ps,A Rectangle

triangle.ps,A Triangle

Assuming that the files circle.ps, rectangle.ps and triangle.ps exist, then
the following code will generate a figure for each graphics file3:

\applyCSVfile{sample3.csv}{

\begin{figure}

\centerline{\includegraphics{\insertFile}}

\caption{\insertCaption}

\end{figure}}

Note that in this example, you can’t use \insertbyname{File}. (See Note 3 in
Section 11.)

Example 3 (Mail Merging using \field)

Suppose there is a file called details.csv that has the following contents:

Miss A. Person,1 The Road\\The Town\\AB1 2XY,15.00,4th May 2004

Mr A. N. Other,2 The Road\\The Town\\AB1 2XY,15.30,11th May 2004

In this case the data has no header file, so the starred version of \applyCSVfile
must be used. Since there is no header file, you must use \field to access the
entries:

\applyCSVfile*{details.csv}{%

\begin{letter}{\field{1}\\\field{2}}

\opening{Dear \field{1}}

You are invited to an interview at \field{3}\ on the \field{4}.

\closing{Yours Sincerely}

\end{letter}}

3 Converting data in a CSV file into a tabular
environment

\CSVtotabular{〈filename〉}{〈col-align〉}{〈first〉}{〈middle〉}{〈last〉}\CSVtotabular

〈filename〉 is the name of the CSV file which must have a header row on line 1,
〈col-align〉 is the column alignment argument that gets passed to the tabular en-
vironment, 〈first〉 is the code for the first line, 〈middle〉 is the code for the middle
lines and 〈last〉 is the code for the last line. This is best demonstrated with an
example.

3The graphics or graphicx package will be needed.

4

Table 1: Example 4

Name Assignment 1 Assignment 2 Total
A. Smith 80 70 150
B. Jones 60 80 140
J. Doe 85 75 160

75 75 150

Example 4 (Aligning Data from a CSV file)

Suppose the file sample.csv looks like:

Name,Assignment 1,Assignment 2,Total

A. Smith,80,70,150

B. Jones,60,80,140

J. Doe,85,75,160

,75,75,150

then the following code can be used to align the data:

\CSVtotabular{sample.csv}{lccc}{%

\bfseries Name &

\bfseries Assignment 1&

\bfseries Assignment 2&

\bfseries Total\\}{%

\insertName &

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal\\}{%

&

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal}

The result of this code is shown in Table 14.

\ifnextrowlast{〈last-code〉}{〈not-last-code〉}\ifnextrowlast

The command \ifnextrowlast can be used to vary what happens on the last but
one row. The following example illustrates this by placing \hline\hline after
the penultimate row.

Example 5 (Adding Lines)

\CSVtotabular{sample.csv}{|l|ccc|}{%

\hline\bfseries Name &

\bfseries Assignment 1&

\bfseries Assignment 2&

\bfseries Total\\\hline\hline}{%

\insertName &

\insertbyname{Assignment 1} &

4Note that \CSVtotabular only puts the data in a tabular environment not in a table

5

Table 2: Example 5

Name Assignment 1 Assignment 2 Total
A. Smith 80 70 150
B. Jones 60 80 140
J. Doe 85 75 160

75 75 150

\insertbyname{Assignment 2} &

\insertTotal

\ifnextrowlast{\\\hline\hline}{\\}}{%

&

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal\\\hline}

This result of this code is shown in Table 2.

Example 6 (Added Complexity)

In this example, \multicolumn is used to override the column specifier for the
first column in the last row.

\CSVtotabular{sample2.csv}{|l|ccc|}{%

\hline\bfseries Name &

\bfseries Assignment 1 &

\bfseries Assignment 2 &

\bfseries Total\\\hline\hline

}{%

\insertName &

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal

\ifnextrowlast{\\\hline\multicolumn{1}{l|}{}}{\\}

}{%

&

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal\\\cline{2-4}

}

Notice that instead of placing \multicolumn{1}{l|}{} at the start of the final
argument, it is instead placed in the first argument to \ifnextrowlast5. The
result of this code is shown in Table 3.

5See Note 4 in Section 11

6

Table 3: Example 6

Name Assignment 1 Assignment 2 Total
A. Smith 80 70 150
B. Jones 60 80 140
J. Doe 85 75 160

75 75 150

4 Converting CSV file into longtable environ-
ment

The command \CSVtolongtable works in the same way as \CSVtotabular but\CSVtolongtable

creates a longtable environment instead of a tabular environment.

Example 7 (Using a longtable environment)

Suppose the CSV file in the previous example, contains, say, 100 entries. This will
no longer fit onto one page, so it would be better to use CSVtolongtable instead.
For example:

\CSVtolongtable{sample.csv}{|l|ccc|}{%

\caption{Student Marks}\label{tab:students}\\

\hline

\bfseries Name &

\bfseries Assignment 1 &

\bfseries Assignment 2 &

\bfseries Total\\\hline

\endfirsthead

\caption[]{Student Marks}\\

\hline

\bfseries Name &

\bfseries Assignment 1 &

\bfseries Assignment 2 &

\bfseries Total\\\hline

\endhead

\hline

\multicolumn{3}{r}{\em Continued on next page}

\endfoot

\hline

\endlastfoot}{%

\insertName &

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal

\ifnextrowlast{\\\hline\hline}{\\}}{%

& \insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal\\}

7

5 Associated Counters

Within the \CSVtotabular, \CSVtolongtable and \applyCSVfile commands,
there are two counters, csvlinenum and csvrownumber. The former, csvlinenum,csvlinenum

csvrownumber is the current line number in the CSV file, whereas the latter, csvrownumber, is
the current data row. Of the two counters, csvrownumber is likely to be the most
useful.

Example 8 (Stripy Table)

David Carlisle’s colortbl package defines the command \rowcolor which enables
you to specify the row colour. Suppose you want a stripy table6, this can be
achieved as follows:

\CSVtotabular{sample2.csv}{lccc}{%

\rowcolor{green}\bfseries Name &

\bfseries Assignment 1 &

\bfseries Assignment 2 &

\bfseries Total\\\rowcolor{blue}

}{%

\insertName &

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal

\ifthenelse{\isodd{\value{csvrownumber}}}{%

\\\rowcolor{green}}{\\\rowcolor{blue}}

}{%

&

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal

}

The resulting table is illustrated in Table 4.

Table 4: Stripy Table Example

Name Assignment 1 Assignment 2 Total
A. Smith 80 70 150
B. Jones 60 80 140
J. Doe 85 75 160

75 75 150

Example 9 (More Mail Merging)

This is an example of mail merging where the letter reference is generated from
the value of csvrownumber. The CSV file is as used in Example 1 on page 3.

6This is designed as an example of how to use the package, not incouragement to produce
garish tables!

8

\applyCSVfile{details.csv}{%

\begin{letter}{\insertName\\\insertAddress}

\opening{Dear \insertName}

\textbf{Ref : } interview.\thecsvrownumber

You are invited to an interview at \insertTime\ on the \insertDate.

\closing{Yours Sincerely}

\end{letter}}

6 Cross-Referencing

Labels can be generated using the standard \label command, but you will
need some way to make each label unique. Example 10 does this by using
\thecsvrownumber, whereas Example 11 uses \insert〈identifier〉.

Example 10 (Labelling within \applyCSVfile)

Example 2 on page 3 can be modified to label each figure:

\applyCSVfile{sample3.csv}{

\begin{figure}

\centerline{\includegraphics{\insertFile}}

\caption{\insertCaption}

\label{fig:pic\thecsvrownumber}

\end{figure}}

This example uses \label{fig:pic\thecsvrownumber}, so the first figure gener-
ated by this \applyCSVfile command will have the label fig:pic1, the second
fig:pic2 etc.

Example 11 (Labelling within \applyCSVfile)

Modifying the previous example, we now have:

\applyCSVfile{sample3.csv}{

\begin{figure}

\centerline{\includegraphics{\insertFile}}

\caption{\insertCaption}

\label{fig:\insertFile}

\end{figure}}

The labels for each figure are now: fig:circle.ps, fig:rectangle.ps and
fig:triangle.ps, respectively.

9

Example 12 (Labelling within \CSVtotabular)

This example is slightly more complicated. The CSV file, data.csv looks like:

Incubation Temperature,Incubation Time,Time to Growth

40,120,40

40,90,60

35,180,20

The following code generates a table using the data with an additional column
that generates the experiment number. (See note 8.)

\begin{table}

\caption{Time to Growth Experiments}

\label{tab:exp}

\vspace{10pt}

\centering

\CSVtotabular{data.csv}{cccc}{%

% Header Row

\bfseries Experiment &

\bfseries \begin{tabular}{c}Incubation\\Temperature\end{tabular} &

\bfseries \begin{tabular}{c}Incubation\\Time\end{tabular} &

\bfseries \begin{tabular}{c}Time\\to\\Growth\end{tabular}\\}{%

% Middle Rows

\label{exp:\insertbyname{Incubation Temperature}:\insertbyname{Incubation Time}}

\thecsvrownumber &

\insertbyname{Incubation Temperature} &

\insertbyname{Incubation Time} &

\insertbyname{Time to Growth} \\}{%

% Final Row

\label{exp:\insertbyname{Incubation Temperature}:\insertbyname{Incubation Time}}

\thecsvrownumber &

\insertbyname{Incubation Temperature} &

\insertbyname{Incubation Time} &

\insertbyname{Time to Growth}}

\par

\end{table}

It can be seen from Table~\ref{tab:exp}, that

Experiment~\ref{exp:35:180} had the shortest time to growth.

In this example, each experiment has the corresponding label exp:〈Incubation
Temperature〉:〈Incubation Time〉 so the first experiment has label exp:40:120,
the second experiment has the label exp:40:90 and the third experiment has the
label exp:35:180.

Table 5 shows the resulting table for this example.

The following example is more refined in that it takes advantage of the fact
that the time to growth data consists of integers only, so the experiment with the
maximum growth can be determined by LATEX.

Example 13 (Labelling within \CSVtotabular)

\newcounter{maxgrowth}

\newcounter{incT} % incubation temperature

10

Table 5: Time to Growth Experiments

Experiment
Incubation

Temperature
Incubation

Time

Time
to

Growth
1 40 120 40
2 40 90 60
3 35 180 20

\newcounter{inct} % incubation time

\begin{table}

\caption{Time to Growth Experiments}

\label{tab:exp}

\vspace{10pt}

\centering

\CSVtotabular{data.csv}{cccc}{%

% Header row

\bfseries Experiment &

\bfseries \begin{tabular}{c}Incubation\\Temperature\end{tabular} &

\bfseries \begin{tabular}{c}Incubation\\Time\end{tabular} &

\bfseries \begin{tabular}{c}Time\\to\\Growth\end{tabular}\\}{%

% Middle rows

\label{exp:\insertbyname{Incubation Temperature}:\insertbyname{Incubation Time}}

\thecsvrownumber &

\insertbyname{Incubation Temperature} &

\insertbyname{Incubation Time} &

\insertbyname{Time to Growth}%

\ifthenelse{\value{maxgrowth}<\insertbyname{Time to Growth}}{%

\setcounter{maxgrowth}{\insertbyname{Time to Growth}}%

\setcounter{incT}{\insertbyname{Incubation Temperature}}%

\setcounter{inct}{\insertbyname{Incubation Time}}}{}%

\\}{%

% Last row

\label{exp:\insertbyname{Incubation Temperature}:\insertbyname{Incubation Time}}

\thecsvrownumber &

\insertbyname{Incubation Temperature} &

\insertbyname{Incubation Time} &

\insertbyname{Time to Growth}%

\ifthenelse{\value{maxgrowth}<\insertbyname{Time to Growth}}{%

\setcounter{maxgrowth}{\insertbyname{Time to Growth}}%

\setcounter{incT}{\insertbyname{Incubation Temperature}}%

\setcounter{inct}{\insertbyname{Incubation Time}}}{}%

}

\par

\end{table}

As can be seen from Table~\ref{tab:exp},

Experiment~\ref{exp:\theincT:\theinct}

had the maximum time to growth, with

incubation time \theinct,

incubation temperature \theincT\ and

11

time to growth, \themaxgrowth.

7 Saving Entries

Entries can be saved using the command:

\csvSaveEntry[〈counter〉]{〈identifier〉}[〈empty text〉]\csvSaveEntry

where 〈counter〉 is a LATEX counter, by default csvrownumber, and 〈identifier〉 is
the header entry. The entry can then be used with the command:

\csvGetEntry{〈counter〉}{〈identifier〉}\csvGetEntry

The final optional argument 〈empty text〉 to \csvSaveEntry is the text to use
if the entry is blank. For example, \csvSaveEntry{Time}[MISSING DATA] will
print MISSING DATA if the Time field is blank.

The following example illustrates the use of these commands.

Example 14 (Saving Entries)

This example illustrates how you can use one CSV file to access data in other CSV
files. This example has several CSV files:

File index.csv:

File,Temperature,NaCl,pH

exp25a.csv,25,4.7,0.5

exp25b.csv,25,4.8,1.5

exp30a.csv,30,5.12,4.5

File exp25a.csv:

Time,Logcount

0,3.75

23,3.9

45,4.0

File exp25b.csv:

Time,Logcount

0,3.6

60,3.8

120,4.0

File exp30a.csv:

Time,Logcount

0,3.73

23,3.67

60,4.9

12

It is not possible to nest \CSVtotabular, \CSVtolongtable and \applyCSVfile,
so if you need to go through index.csv and use each file named in there, you can
first go through index.csv storing the information using \csvSaveEntry as fol-
lows:

\newcounter{maxexperiments}

\applyCSVfile{sample5.csv}{%

\stepcounter{maxexperiments}

\csvSaveEntry{File}

\csvSaveEntry{Temperature}

\csvSaveEntry{NaCl}

\csvSaveEntry{pH}

}

The counter maxexperiments simply counts the number of entries in index.csv.
The entries can now be used to generate a table for each file listed in index.csv
(the \whiledo command is defined in the ifthen package):

\newcounter{experiment}

\whiledo{\value{experiment}<\value{maxexperiments}}{%

\stepcounter{experiment}

\begin{table}

\caption{Temperature = \protect\csvGetEntry{experiment}{Temperature},

NaCl = \protect\csvGetEntry{experiment}{NaCl},

pH = \protect\csvGetEntry{experiment}{pH}}

\vspace{10pt}

\centering

\CSVtotabular{\csvGetEntry{experiment}{File}}{ll}{%

Time & Log Count\\}{%

\insertTime & \insertLogcount\\}{%

\insertTime & \insertLogcount}

\end{table}

}

Note that \csvGetEntry needs to be \protected within the \caption command.
This example can be modified if, say, you only want the tables where the

temperature is 25:

\setcounter{experiment}{0}

\whiledo{\value{experiment}<\value{maxexperiments}}{%

\stepcounter{experiment}

\ifthenelse{\equal{\csvGetEntry{experiment}{Temperature}}{25}}{%

\begin{table}

\caption{Temperature = \protect\csvGetEntry{experiment}{Temperature},

NaCl = \protect\csvGetEntry{experiment}{NaCl},

pH = \protect\csvGetEntry{experiment}{pH}}

\vspace{10pt}

\centering

\CSVtotabular{\csvGetEntry{experiment}{File}}{ll}{%

Time & Log Count\\}{%

\insertTime & \insertLogcount\\}{%

\insertTime & \insertLogcount}\par

\end{table}}{}

}

13

8 Pie Charts (csvpie.sty)

If you want to create a pie chart from data stored in a CSV file, you can use the
csvpie package, distributed with the csvtools package. A basic pie chart can be
created using the command:

\csvpiechart[〈options〉]{〈variable〉}{〈filename〉}\csvpiechart

where 〈filename〉 is the name of the CSV file containing the data, and 〈variable〉 is
the command indicating the entry that contains the value for the given segment.
The starred version of \csvpiechart should be used if the CSV file has no header
row.

The pie charts have “inner” labels on the segment, and “outer” labels out-
side the chart. The labels are given by the commands \csvpieinnerlabel and\csvpieinnerlabel

\csvpieouterlabel. The default definitions are:\csvpieouterlabel

\newcommand{\csvpieouterlabel}{\field{1}}

\newcommand{\csvpieinnerlabel}{\field{2}\%}

This assumes that the second column contains the data, and the first column
contains a description, but can be redefined as necessary.

The pie chart display can be modified using the optional argument to
\csvpiechart. This argument should be a 〈key〉=〈value〉 list. The available
keys are as follows:

start This should be an integer specifying the starting angle of the first segment.
This is 0 by default.

total This should be an integer specifying the sum of all the segment values. This
is 100 by default.

radius This should be a length specifying the radius of the pie chart. (Default:
2cm)

inner This should be a fraction specifying the relative distance along the radius
to start the inner label. (Default: 0.25)

outer This should be a fraction specifying the relative distance along the radius
to start the outer label. (Default: 1.25)

cutaway This should be a comma-separated list of numbers corresponding to the
segments that should be cut away from the rest of the pie chart. Since the
value may contain commas, the value should always be enclosed in braces.
Ranges may also be used. If a range is used, all the segments in the given
range are kept together, so, for example, cutaway={1,2} will separate the
first two segments from the pie chart, and the two segments will also be
separated from each other, whereas cutaway={1-2} will separate the first
two segments from the pie chart, but will keep the two segments together.

offset This should be a fraction specifying the relative distance along the radius
to shift the cut away segments. (Default: 0.1)

firstrow This should be the number of the first row containing the actual
data. This is equivalent to the optional argument of \applyCSVfile or
\applyCSVfile*.

14

Note that TEX performs integer arithmetic. Although the CSV file may contain
decimal numbers, rounding will occur when constructing the pie charts.

The colours for the pie chart segments can be set using the command:\csvpiesegmentcol

\csvpiesegmentcol{〈n〉}{〈colour〉}

where 〈n〉 is the segment number, and 〈colour〉 is a defined colour name. For
example, if you want the first segment in the pie chart to be yellow, do:

\csvpiesegmentcol{1}{yellow}

There are 8 predefined segment colours, if your pie chart has more than 8 segments,
you will need to specify the remainder.

You can obtain the colour name for a given segment using:\csvpiesegcolname

\csvpiesegcolname{〈n〉}

where 〈n〉 is the segment number. The \csvpiechart command uses \applyCSVfile,
so the csvrownumber counter can be used. This means that you can change the
text colour of the outer label to match the segment. For example:

\renewcommand{\csvpieouterlabel}{%

\color{\csvpiesegcolname{\value{csvrownumber}}}\field{2}}

Note that \value must be used since 〈n〉 has to be a number.
If you want grey pie charts, either use the monochrome package option:

\usepackage[monochrome]{csvpie}

or use the command \colorpiechartfalse prior to using \csvpiechart. To\colorpiechartfalse

switch back to colour pie charts, use \colorpiecharttrue.\colorpiecharttrue

Example 15 (A Pie Chart)

Given a CSV file (called fruit.csv) containing:

Name,Value

Apples,20

Pears,15

"lemons,limes",30.5

Peaches,24.5

Cherries,10

Then the value for each segment is given by the second column, so 〈variable〉
should be \field{2} or \insertValue. The pie charts shown in Figure 1 can be
created using:

% Change the way the labels are displayed

\renewcommand{\csvpieinnerlabel}{\sffamily\insertValue\%}

\renewcommand{\csvpieoutlabel}{%

\color{\csvpiesegcolname{\value{csvrownumber}}}\sffamily\insertName}

\begin{figure}

\begin{center}

\begin{tabular}{cc}

15

\csvpiechart[start=45,cutaway={1,2}]{\insertValue}{fruit.csv} &

\csvpiechart[start=45,cutaway={1-2}]{\insertValue}{fruit.csv} \\

(a) & (b)

\end{tabular}

\end{center}

\caption{Pie Chart Example (a) cutaway=\{1,2\} (b) cutaway=\{1-2\}}

\end{figure}

The inner and outer labels have been redefined to use a sans-serif font, and the
outer label is in the same colour as its corresponding segment. Both pie charts
have a starting angle of 45◦, and theyhave the first two segments cutaway, but in
(a) the first two segments are separated from each other, whereas in (b), the first
two segments are joined, although separated from the rest of the pie chart.

If the CSV file has no header row, the starred version should be used, e.g.:

\csvpiechart*[cutaway={1-2}]{\field{2}}{fruit.csv}

20
%

A
p
p
le

s

15%

Pears

30
.5
%

lem
on

s,l
im

es

24.5%

Peaches

10%

Cher
ries

20
%

A
p
p
le

s

15%

Pears

30
.5
%

lem
on

s,l
im

es

24.5%

Peaches

10%

Cher
ries

(a) (b)

Figure 1: Pie Chart Example (a) cutaway={1,2} (b) cutaway={1-2}

9 Sorting Data (csvsort.sty)

The csvsort package (which forms part of the csvtools bundle) provides analogous
commands to those provided by csvtools, but the data is first sorted. The csvsort
package needs to be loaded separately in order to access the necessary commands.
The package options should be a list of key=value pairs, where the available keys
are:

16

verbose Verbose mode. This is a boolean key. If set, the comparisons per-
formed by the insertion sort code are printed to the screen. (Default:
verbose=true.)

sort This key specifies how to sort the data. It may take one of the following
values:

• alphabetical ascending (or just alphabetical)

• alphabetical descending

• numerical ascending (or just numerical)

• numerical descending

(Default: sort=alphabetical ascending)

variable The sort variable. (Default: sort=\field{1})

sfirstdataline The line on which the data starts in a data file without a header
row. (Default: sfirstdataline=1.)

firstdataline The line on which the data starts in a data file with a header row.
(Default: firstdataline=2.)

Note that the csvsort package requires the xfor package and Éamonn McManus’
compare.tex file. The csvsort package uses an insertion sort method to sort the
data, so large amounts of data may slow processing time. The following commands
are provided by csvsort:

\sortapplyCSVfile[〈options〉]{〈filename〉}{〈text〉}\sortapplyCSVfile

\sortapplyCSVfile*[〈options〉]{〈filename〉}{〈text〉}

These commands are analogous to \applyCSVfile and \applyCSVfile*, except
that the data is first sorted. The optional argument is a key=value list. The keys
are the same as those used in the package options, described above. These options
only apply to the given instance of the command, whereas the package options
apply to all csvsort commands, unless overridden in 〈options〉. Example, suppose
you have a file called unsorted.csv which looks like:

First Name,Surname,Age

Zephram,Lang,60

Fred,Lang,10

Barney,Langley,25

Jane,Brown,5

Adam,Smith,24

Bert,Jones,18

Then

\sortapplyCSVfile[sort=alphabetical,variable=\insertSurname]{unsorted.csv}{%

\insertSurname, \insertbyname{First Name}. Age: \insertAge\par}

will produce the following output:
Brown, Jane. Age:5
Jones, Bart. Age:18
Lang, Zephram. Age:60
Lang, Fred. Age:10

17

Langley, Barney. Age:25
Smith, Adam. Age: 24
Note that the data has only been sorted according to the surname. To sort

first by surname, then by first name, you can do something like:

\sortapplyCSVfile[sort=alphabetical,

variable={\insertSurname,\insertbyname{First Name}}]{unsorted.csv}{%

\insertSurname, \insertbyname{First Name}. Age: \insertAge\par}

As with \applyCSVfile, you must use \field if you use the starred version:

\sortapplyCSVfile*[sort=alphabetical,

variable={\field{2},\field{1}}]{unsorted.csv}{%

\field{2}, \field{1}. Age: \field{3}\par}

The commands:

\sortCSVtotabular[〈options〉]{〈filename〉}{〈col-spec〉}{〈first row〉}{〈all but last\sortCSVtotabular

row〉}{〈last row〉}
\sortCSVtolongtable[〈options〉]{〈filename〉}{〈col-spec〉}{〈first row〉}{〈all but\sortCSVtolongtable

last row〉}{〈last row〉}
Are analogous to \CSVtotabular and \CSVtolongtable, where, again, 〈options〉
is a list of key=value pairs, the same as \sortapplyCSVfile. Using the same
example data as above, the following command will sort the data according to age
(in numerical order) and place in a tabular environment:

\sortCSVtotabular[sort=numerical,variable=\insertAge]{unsorted.csv}{llr}{%

\bfseries Surname & \bfseries First Name & \bfseries Age\\}{%

\insertSurname & \insertbyname{First Name} & \insertAge\\}{%

\insertSurname & \insertbyname{First Name} & \insertAge}

Note that the counter csvlinenum has no meaning in the commands provided
by the csvsort package. The csvrownumber counter corresponds to the sorted data
row.

10 The csvtools.pl Perl Script

Suppose you have several large CSV files, and you have included the information
into your document using \applyCSVfile, \CSVtolongtable, \CSVtotabular or
\csvpiechart, which has made life so much easier for you, but you are now re-
quired by a journal to submit your source code in a single .tex file. They don’t
want all your CSV files, so what do you do? If you have Perl installed on your
system you can use the csvtools.pl Perl script. This has the following syntax:

csvtools.pl 〈in-file〉 〈out-file〉
where 〈in-file〉 is the name of your file that contains the \applyCSVfile,
\CSVtotabular etc commands, and 〈out-file〉 is a new file which will be created by
csvtools.pl. This new file will be the same as 〈in-file〉 except that all occurances
of \applyCSVfile, \CSVtolongtable, \CSVtotabular and \csvpiechart will be
replaced by the relevant data extracted from the named CSV files.

18

Example 16 (csvtools.pl — Aligning Data)

Suppose the file mydoc.tex contains the code given in Example 4, with the asso-
ciated CSV file sample.csv also given in that example. Then if you do:
csvtools.pl mydoc.tex mydocnew.tex

the file mydocnew.tex will be created which will be identical to mydoc.tex except
the lines containing the code \CSVtotabular{sample.csv}{lccc}{. . . }{. . . }{. . . }
will be replaced with the lines:
% \CSVtotabular{sample.csv}... converted using csvtools.pl

%>> START INSERT

\begin{tabular}{lccc}

\bfseries Name &

\bfseries Assignment 1 &

\bfseries Assignment 2 &

\bfseries Total\\

A. Smith&80&70&150\\

B. Jones&60&80&140\\

J. Doe&85&75&160\\

&75&75&150

\end{tabular}%<< END INSERT

Similarly, csvtools.pl will substitute all occurrances of \CSVtolongtable,
\applyCSVfile and \csvpiechart.

10.1 Notes

1. If perl is located in a directory other than /usr/bin/ you will need to edit
the first line of csvtools.pl as appropriate. You can find the location using
the command:

which perl

2. If you can’t directly execute a Perl script, you can do:

perl csvtools.pl 〈in-file〉 〈out-file〉

3. You must first LATEX your document before using csvtools.pl as it checks
the log file for any counters that have been defined.

4. csvtools.pl only knows about a very limited set of LATEX commands. It
should be able to understand:

\CSVtotabular{\csvGetEntry{experiment}{File}}{ll}{...

(see Example 14), but it won’t be able to understand, say,

\newcommand{\filename}{\csvGetEntry{experiment}{File}}

\CSVtotabular{\filename}{ll}{...

It can pick up on \addtocounter, \stepcounter, \refstepcounter and
\setcounter but only if they are used explicitly in the named .tex file. (It
ignores any files that have been included using \input, \include etc.)

5. This Perl script has only been tested under Linux, but it ought to work
under other systems.

19

11 Bugs/Drawbacks/“Features”

1. The package doesn’t check to see whether \insert〈identifier〉 exists, other-
wise you would not be able to use multiple CSV files with the same headers,
as in Example 14. Therefore it is recommended that you check to make sure
that the command does not already exist. For example, the TEX commands
\insert and \insertpenalties already exist, so a blank header or a header
named penalties would cause problems. (These two will now cause an error
as from version 1.1, but it’s something bear in mind.)

2. Note also that \insertbyname doesn’t check if you’ve given a valid label,
so if no text appears, check you’ve spelt it correctly, checking punctuation,
spaces and case.

3. Note that in Example 2, replacing line 3 with:

\centerline{\includegraphics{\insertbyname{File}}}

will cause an error, as \insertbyname{File} doesn’t get fully expanded by
the time it gets passed to \includegraphics, and will prevent \includegraphics
from finding the file. It is possible to get around this using TEX’s \edef com-
mand:

\edef\psfilename{\insertbyname{File}}

\centerline{\includegraphics{\psfilename}}

4. You can’t have commands like \hline, \cline and \multicolumn in
the first column of the 〈middle〉 or 〈last〉 code of \CSVtotabular or
\CSVtolongtable. If you do, it will generate a misplaced \noalign er-
ror, instead you need to put it at the end of the 〈first〉 or 〈middle〉 code.
(See Example 6.)

5. You can’t have nested \applyCSVfile, \CSVtolongtable and \CSVtotabular
commands. Nor can you have \csvpiechart within one of these commands
(See Example 14)

6. If the CSV file has a header row, it must be on the first line.

7. It is possible for TEX to run out of memory if you use \csvSaveEntry on a
large file.

8. In version 1.0, there was an inconsistency with csvrownumber within
\applyCSVfile and \CSVtotabular. In the former it excluded the header
row, whereas the latter included it. This has been changed in version
1.1 so that within \applyCSVfile, \CSVtotabular and \CSVtolongtable,
csvrownumber refers to the data row (excluding header row.) I hope this
doesn’t cause problems, but it makes more sense that they should be consis-
tent. So if you have no blank lines in your CSV file, csvrownumber should
always be 1 more than csvlinenumber.

20

12 Contact Details

Dr Nicola Talbot
School of Computing Sciences
University of East Anglia
Norwich. NR4 7TJ. England.

http://theoval.cmp.uea.ac.uk/~nlct/

Index

A
\applyCSVfile 3

C
\colorpiechartfalse 15
\colorpiecharttrue . 15
\csvGetEntry 12
\csvlinenum 8
\csvpiechart 14
\csvpieinnerlabel . 14

\csvpieouterlabel . 14
\csvpiesegcolname . 15
\csvpiesegmentcol . 15
\csvrownumber 8
\csvSaveEntry 12
\CSVtolongtable 7
\CSVtotabular 4

F
\field 3

I
\ifnextrowlast 5
\insert... 3
\insertbyname 3

S
\setcsvseparator . . . 2
\sortapplyCSVfile . 17
\sortCSVtolongtable 18
\sortCSVtotabular . 18

21

http://theoval.cmp.uea.ac.uk/~nlct/

	Introduction
	Mail Merging and Similar Applications
	Converting data in a CSV file into a tabular environment
	Converting CSV file into longtable environment
	Associated Counters
	Cross-Referencing
	Saving Entries
	Pie Charts (csvpie.sty)
	Sorting Data (csvsort.sty)
	The csvtools.pl Perl Script
	Notes

	Bugs/Drawbacks/``Features''
	Contact Details
	Index

