Polyglossia: Modern multilingual typesetting with \textit{Xe\LaTeX} and \textit{Lua\LaTeX}

FRANÇOIS CHARETTE ARTHUR REUTENAUER
BASTIEN ROUCARIÉS JÜRGEN SPITZMÜLLER

2019/11/15 v1.46
(pdf file generated on 15 November 2019)

Contents

1 Introduction 1

2 Setting up multilingual documents 2
 2.1 Activating languages 2
 2.2 Supported languages 3
 2.3 Relation to and use of Babel language names 4
 2.4 Global options 4

3 Language-switching commands 6
 3.1 Recommended commands 6
 3.2 Babel commands 7
 3.3 Other commands 7
 3.4 Setting up alias commands 8

4 Font setup 8

∗Current maintainer
5 Adapting hyphenation

5.1 Hyphenation exceptions ... 9
5.2 Hyphenation disabling ... 9

6 Language-specific options and commands 9
6.1 afrikaans .. 10
6.2 arabic ... 10
6.3 armenian ... 11
6.4 belarusian .. 11
6.5 bengali ... 12
6.6 catalan ... 12
6.7 czech ... 12
6.8 dutch ... 13
6.9 english ... 13
6.10 esperanto .. 13
6.11 finnish ... 14
6.12 french ... 14
6.13 gaelic ... 15
6.14 georgian ... 16
6.15 german ... 16
6.16 greek ... 17
6.17 hebrew ... 18
6.18 hindi ... 18
6.19 hungarian ... 18
6.20 italian ... 19
6.21 korean ... 19
6.22 kurdish .. 20
6.23 lao ... 20
6.24 latin ... 20
6.25 malay ... 23
6.26 mongolian .. 23
6.27 norwegian .. 24
6.28 persian .. 24
6.29 portuguese .. 25
6.30 russian .. 25
6.31 sami ... 26
6.32 sanskrit .. 26
6.33 serbian ... 26
6.34 slovak ... 26
6.35 slovenian ... 27
6.36 sorbian .. 27
6.37 spanish .. 28
6.38 syriac ... 28
6.39 thai ... 29
6.40 tibetan .. 29
6.41 ukrainian ... 29
6.42 welsh ... 29

7 Modifying or extending captions, date formats and language settings 29

8 Script-specific numbering 30
 8.1 General localization of numbering 31
 8.2 Non-Western decimal digits 31
 8.3 Non-Latin alphabetic numbering 32

9 Footnotes in right-to-left context 33
 9.1 Horizontal footnote position 33
 9.2 Footnote rule length and position 34

10 Calendars 34
 10.1 Hebrew calendar (hebrewcal.sty) 35
 10.2 Islamic calendar (hijrical.sty) 35
 10.3 Farsi (jalālī) calendar (farsical.sty) 35

11 Accessing language information 36

12 Acknowledgements (by François Charette) 36

13 More acknowledgements (by the current development team) 37
1 Introduction

Polyglossia is a package for facilitating multilingual typesetting with \texttt{XeLaTeX} and (with some exceptions) \texttt{LuaLaTeX}. Basically, it can be used as an alternative to \texttt{babel} for performing the following tasks automatically:

1. Loading the appropriate hyphenation patterns.
2. Setting the script and language tags of the current font (if possible and available), via the package \texttt{fontspec}.
3. Switching to a font assigned by the user to a particular script or language.
4. Adjusting some typographical conventions according to the current language (such as afterindent, frenchindent, spaces before or after punctuation marks, etc.).
5. Redefining all document strings (like “chapter”, “figure”, “bibliography”).
6. Adapting the formatting of dates (for non-Gregorian calendars via external packages bundled with polyglossia: currently the Hebrew, Islamic and Farsi calendars are supported).
7. For languages that have their own numbering system, modifying the formatting of numbers appropriately (this also includes redefining the alphabetic sequence for non-Latin alphabets).\(^{1}\)
8. Ensuring proper directionality if the document contains languages that are written from right to left (via the package \texttt{bidi}, available separately).

Several features of \texttt{babel} that do not make sense in the \texttt{XeLaTeX} world (like font encodings, shorthands, etc.) are not supported. Generally speaking, **polyglossia** aims to remain as compatible as possible with the fundamental features of \texttt{babel} while being cleaner, light-weight, and modern. The package \texttt{antomega} has been very beneficial in our attempt to reach this objective.

Requirements The current version of **polyglossia** makes use of some convenient macros defined in the \texttt{etoolbox} package by \texttt{Philipp Lehmann} and \texttt{Joseph Wright}. Being designed for \texttt{XeLaTeX} and \texttt{LuaLaTeX}, it obviously also relies on \texttt{fontspec} by \texttt{Will Robertson}. For languages written from right to left, it needs the package \texttt{bidi} (for \texttt{XeLaTeX}) or \texttt{luabidi} (for \texttt{LuaLaTeX}) by \texttt{Vafa Khalighi} (وفا خليفي) and the \texttt{bidi-tex GitHub Organisation}. Polyglossia also bundles three packages for calendaric computations (\texttt{hebrewcal}, \texttt{hijrical}, and \texttt{farsical}).

\(^{1}\)This is done by bundled sub-packages such as \texttt{arabicnumbers}.
2 Setting up multilingual documents

2.1 Activating languages

The default language of a document is specified by means of the command
\setdefaultlanguage[⟨options⟩]{{lang}}
(or, equivalently, \setmainlanguage).

Secondary languages are specified with
\setotherlanguage[⟨options⟩]{{lang}}.

All these commands allow you to set language-specific options.\footnote{Section 6 documents these options for the respective languages.}

It is also possible to load a series of secondary languages at once (but without options) using
\setotherlanguages{{lang1},{lang2},{lang3},…}.

All language-specific options can be modified locally by means of the
language-switching commands described in section 3.

\textbf{Note} In general, it is advisable to activate the languages after all packages have been loaded. This is particularly important if you use right-to-left scripts or languages with babel shorthands.

2.2 Supported languages

Table 1 lists all languages currently supported. Those in \textit{red} have specific options and/or commands that are explained in section 6 below.

\begin{verbatim}
\texttt{v1.0.1} \hspace{1cm} \texttt{v1.1.1} \hspace{1cm} \texttt{v1.2.0} \hspace{1cm} \texttt{v1.43} \hspace{1cm} \texttt{v1.45} \hspace{1cm} \texttt{v1.46}
\end{verbatim}

\textbf{Version Notes} The support for Amharic \texttt{←} should be considered an experimental attempt to port the package \texttt{ethiop}; feedback is welcome. Version 1.1.1 \texttt{←} added support for Asturian, Lithuanian, and Urdu. Version 1.2 \texttt{←} introduced Armenian, Occitan, Bengali, Lao, Malayalam, Marathi, Tamil, Telugu, and Turkmen.\footnote{See acknowledgements at the end for due credit to the various contributors.} Version 1.43 \texttt{←} brought basic support for Japanese (this is considered experimental, feedback is appreciated). In version 1.45 \texttt{←}, support for Kurdish and Mongolian as well as some new variants (Canadian French and English) have been added. Furthermore, for consistency reasons, some language have been renamed (\texttt{farsi→persian}, \texttt{friulan→friulian}, \texttt{magyar→hungarian}, \texttt{portuges→portuguese}, \texttt{samin→sami}) or merged (\texttt{bahasai/bahasam→malay}, \texttt{brazil/portuges→portuguese}, \texttt{lsorbian/usorbian→sorbian}, \texttt{irish/scottish→gaelic}, \texttt{norsk/nynorsk→norwegian}). The old names are still supported for backwards compatibility reasons. Version 1.46 \texttt{←} introduces support for Afrikaans, Belarusian, Bosnian and Georgian.
Table 1. Languages currently supported in *polyglossia*

<table>
<thead>
<tr>
<th>language</th>
<th>language</th>
<th>language</th>
<th>language</th>
<th>language</th>
</tr>
</thead>
<tbody>
<tr>
<td>afrikaans</td>
<td>danish</td>
<td>hungarian</td>
<td>marathi</td>
<td>slovenian</td>
</tr>
</tbody>
</table>
albanian| divehi| icelandic| mongolian| sorbian|
amharic| dutch| interlingua| nko| spanish|
arabic| english| italian| norwegian| swedish|
armenian| esperanto| japanese| occitan| syriac|
asturian| estonian| kannada| persian| tamil|
basque| finnish| khmer| piedmontese| telugu|
belarusian| french| korean| polish| thai|
bengali| friulian| kurdish| portuguese| tibetan|
bosnian| gaelic| lao| romanian| turkish|
breton| galician| latin| romansh| turkmen|
bulgarian| georgian| latvian| russian| ukrainian|
catalan| german| lithuanian| sami| urdu|
coptic| greek| macedonian| sanskrit| vietnamese|
croatian| hebrew| malay| serbian| welsh|
czech| hindi| malayalam| slovak|

2.3 Relation to and use of Babel language names

If you are familiar with the *babel* package, you will note that *polyglossia*’s language naming slightly differs. Whereas *babel* has a unique name for each language variety (e.g., *american* and *british*), *polyglossia* differentiates language varieties via language options (e.g., *english*, *variant=american*).

Furthermore, *babel* sometimes uses abbreviated language names (e.g., *bahasa* for Bahasa Malayu) as well as endonyms, i.e., language names coming from the designated languages (such as *bahasa*, *canadien* or *magyar*). As opposed to this, *polyglossia* always uses spelled-out (lower-cased) English language names. Please refer to table 2 for the differing language names in both packages.

For convenience reasons, *polyglossia* also supports the use of *babel* names ←
(for the few justified exceptions, please refer to the notes in table 2). The *babel* names listed in table 2 can be used instead of the corresponding *polyglossia* name/options in *setdefaultlanguage* and *setotherlanguage* as well as in the *polyglossia* and *babel* language switching commands/environments documented in section 3.1 and 3.2 (e.g., *textaustrian is synonymous to *textgerman[variant=austrian,spelling=old]). However, unless you have special reasons, we strongly encourage you to use the *polyglossia* names.
Table 2. Babel-polyglossia language name matching

<table>
<thead>
<tr>
<th>Babel name</th>
<th>Polyglossia name</th>
<th>Polyglossia options</th>
</tr>
</thead>
<tbody>
<tr>
<td>acadien</td>
<td>french</td>
<td>variant=acadian</td>
</tr>
<tr>
<td>american</td>
<td>english</td>
<td>variant=american [default]</td>
</tr>
<tr>
<td>australian</td>
<td>english</td>
<td>variant=australian</td>
</tr>
<tr>
<td>austrian</td>
<td>german</td>
<td>variant=austrian, spelling=old</td>
</tr>
<tr>
<td>bahasa</td>
<td>malay</td>
<td>variant=indonesian [default]</td>
</tr>
<tr>
<td>bahasam</td>
<td>malay</td>
<td>variant=malaysian</td>
</tr>
<tr>
<td>brazil</td>
<td>portuguese</td>
<td>variant=brazilian</td>
</tr>
<tr>
<td>british</td>
<td>english</td>
<td>variant=british</td>
</tr>
<tr>
<td>canadian</td>
<td>english</td>
<td>variant=canadian</td>
</tr>
<tr>
<td>canadien</td>
<td>french</td>
<td>variant=canadian</td>
</tr>
<tr>
<td>farsi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>friulan</td>
<td>friulian</td>
<td></td>
</tr>
<tr>
<td>germana</td>
<td>german</td>
<td>spelling=old</td>
</tr>
<tr>
<td>irish</td>
<td>gaelic</td>
<td>variant=irish [default]</td>
</tr>
<tr>
<td>kurmanji</td>
<td>kurdish</td>
<td>variant=kurmanji</td>
</tr>
<tr>
<td>latin.classic</td>
<td>latin</td>
<td>variant=classic</td>
</tr>
<tr>
<td>latin.ecclesiastic</td>
<td>latin</td>
<td>variant=ecclesiastic</td>
</tr>
<tr>
<td>latin.medieval</td>
<td>latin</td>
<td>variant=medieval</td>
</tr>
<tr>
<td>lowersorbian</td>
<td>sorbian</td>
<td>variant=lower</td>
</tr>
<tr>
<td>magyar</td>
<td>hungarian</td>
<td></td>
</tr>
<tr>
<td>n Austrian</td>
<td>german</td>
<td>variant=austrian</td>
</tr>
<tr>
<td>newzealand</td>
<td>english</td>
<td>variant=newzealand</td>
</tr>
<tr>
<td>ng German</td>
<td>german</td>
<td>variant=german [default]</td>
</tr>
<tr>
<td>norsk</td>
<td>norwegian</td>
<td>variant=bokmal</td>
</tr>
<tr>
<td>nswissgerman</td>
<td>german</td>
<td>variant=swiss</td>
</tr>
<tr>
<td>nynorsk</td>
<td>norwegian</td>
<td>variant=nynorsk [default]</td>
</tr>
<tr>
<td>polutonikogreek</td>
<td>greek</td>
<td>variant=polytonic</td>
</tr>
<tr>
<td>portuges</td>
<td>portuguese</td>
<td>variant=portuguese [default]</td>
</tr>
<tr>
<td>samin</td>
<td>sami</td>
<td></td>
</tr>
<tr>
<td>scottish</td>
<td>gaelic</td>
<td>variant=scottish</td>
</tr>
<tr>
<td>serbian</td>
<td>serbian</td>
<td>script=Cyrillic</td>
</tr>
<tr>
<td>slovene</td>
<td>slovenian</td>
<td></td>
</tr>
<tr>
<td>spanishmx</td>
<td>spanish</td>
<td>variant=mexican</td>
</tr>
<tr>
<td>swissgerman</td>
<td>german</td>
<td>variant=swiss, spelling=old</td>
</tr>
<tr>
<td>upper sorbian</td>
<td>sorbian</td>
<td>variant=upper</td>
</tr>
</tbody>
</table>

a Due to the name conflict only available in polyglossia as germanb (which is a babel synonym).

b Available in polyglossia as latinclassic (as dots are invalid in command names).

c Available in polyglossia as latinecclesiastic (as dots are invalid in command names).

d Available in polyglossia as latinmedieval (as dots are invalid in command names).
2.4 Global options

Polyglossia can be loaded with the following global package options:

- **babelshorthands** ← globally activates **babel** shorthands whenever available. Currently shorthands are implemented for Afrikaans, Belarusian, Catalan, Czech, Dutch, Finnish, Georgian, German, Italian, Latin, Mongolian, Russian, and Slovak. Please refer to the respective language descriptions (sec. 6) for details.

- **localmarks** redefines the internal \texttt{\LaTeX} macros \texttt{\markboth} and \texttt{\markright}. In earlier versions of **polyglossia**, ← this option was set by default, but we now realize that it causes more problems than it helps, so it is now off by default. For backwards-compatibility, the option **nolocalmarks** which used to switch off the previous default, and now does nothing, is still available.

- **quiet** turns off most info messages and some of the warnings issued by **\LaTeX**, **fontspec** and **polyglossia**.

3 Language-switching commands

3.1 Recommended commands

For each activated language the command \texttt{\text{⟨lang⟩}(⟨options⟩){⟨lang⟩}} (as well as the synonymous \texttt{\textlang{⟨lang⟩}{⟨options⟩}{⟨lang⟩}} ←) becomes available for short insertions of text in that language. For example \texttt{\textrussian{\today}} and \texttt{\textlang{russian}{\today}} yield 15 ноября 2019 г. The commands switch to the correct hyphenation patterns, they activate some extra features for the selected language (such as extra spacing before punctuation in French), and they translate the date when using \texttt{\today}. They do not, however, translate so-called **caption strings**, i.e., “chapter”, “figure” etc., to the local language (these remain in the main language).

The environment \texttt{(lang)}, which is also available for any activated language, is meant for longer passages of text. It behaves slightly different than the \texttt{\text{⟨lang⟩}} and \texttt{\textlang{⟨lang⟩}} commands: It does everything the latter do, but additionally, the caption strings are translated as well, and the language is also passed to auxiliary files, the table of contents and the lists of figures.tables. Like the commands, the environment provides the possibility of setting language options locally. For instance the following allows us to quote the beginning of Homer’s *Iliad*:
\begin{quote}
\begin{greek}[variant=ancient]
μὴν ἄειδε θεὰ Πηληϊάδεω Ἀχιλῆος οὐλομένην, ἢ μυρί’ Ἀχαιοῖς ἄλγε’ ἔθηκε, πολλάς δ’ ἰφθίμους ψυχὰς Άϊδι προί̈ᾳ̇ν ἡρώων, αὐτοὺς δὲ ἔλώρια τεύχε κύνεσιν οἰωνοῖσι τε πᾶσι, Διὸς δ’ ἐτελείετο βουλή, ἐξ οὗ δὴ τὰ πρῶτα διαστήτην ἐρίσαντε Ἀτρεί̈δης τε ἄναξ ἀνδρῶν καὶ δίος Ἀχιλλεύς.
\end{greek}
\end{quote}

\textit{Arabic} Note that for Arabic one cannot use the environment \texttt{arabic}, as \texttt{arabic} is defined internally by ΕΠΧ. In this case we need to use the environment \texttt{Arabic} instead.

3.2 Babel commands

Some macros defined in babel’s \texttt{hyphen.cfg} (and thus usually compiled into the \texttt{XΕΠΧ} and LuaΕΠΧ format) are redefined, but keep a similar behaviour.

- \texttt{\selectlanguage{⟨lang⟩}}
- \texttt{\selectlanguage[⟨options⟩]{⟨lang⟩}}
- \texttt{\foreignlanguage[⟨options⟩]{⟨lang⟩}{…}}
- \begin{otherlanguage}[⟨options⟩]{⟨lang⟩}{…}\end{otherlanguage}
- \begin{otherlanguage*}[⟨options⟩]{⟨lang⟩}{…}\end{otherlanguage*}

\texttt{\selectlanguage{⟨lang⟩}} and the \texttt{otherlanguage} environment are identical to the the \texttt{(lang)} environment, except that \texttt{\selectlanguage{⟨lang⟩}} does not need to be explicitly closed. The command \texttt{\foreignlanguage{⟨lang⟩}{…}} and the \texttt{otherlanguage*} environment are identical with the use of the \texttt{\text⟨lang⟩} or \texttt{\textlang} command, with the one notable exception that they do not translate the date with \texttt{\today}.

Since the \texttt{XΕΠΧ} and LuaΕΠΧ format incorporate babel’s \texttt{hyphen.cfg}, the low-level commands for hyphenation and language switching defined there are also accessible.
3.3 Other commands

The following commands are probably of lesser interest to the end user, but ought to be mentioned here.\footnote{Note that these commands require polyglossia language names; they do not support language/babel aliases.}

- \selectbackgroundlanguage{(lang)}: this selects the global font setup and the numbering definitions for the default language.
- \resetdefaultlanguage{(⟨options⟩)|(lang)} (experimental): completely switches the default language to another one in the middle of a document: \textit{this may have adverse effects!}
- \normalfontlatin: in an environment where \normalfont has been re-defined to a non-latin script, this will reset to the font defined with \setmainfont etc. In a similar vein, it is possible to use \rmfamilylatin, \sffamilylatin, \sfamilylatin, \ttfamilylatin.
- \latinalph: Representation of counter as a lower-case letter: 1 = a, 2 = b, etc.
- \latinAlph: Representation of counter as a upper-case letter: 1 = A, 2 = B, etc.

3.4 Setting up alias commands

By means of the macro \setlanguagealias{(⟨options⟩)|(language)|(⟨alias⟩)} \setlanguagealias*{⟨alias⟩} you can define alias commands for specific language (variants). E.g.,

\setlanguagealias{variant=austrian}{german}{deAT}

will define a command \textdeAT as well as an environment \{deAT\} which will link towards the command \textgerman{variant=austrian} and the environment \{german\}{variant=austrian}, respectively. The aliases can also be used in the language switching commands described in section 3.1 and 3.2. Note, though, that the usual restrictions for command names apply, so something such as de-AT or de_AT will not work since - and _ are not allowed in command names.

For the latter case, and for the case where an alias would clash with an existing \text{⟨...⟩} command (e.g., \textit), a starred version \setlanguagealias*{⟨alias⟩} is provided which does not define a \text⟨alias⟩ command (but which will set up the alias for everything else, including \textlang(⟨alias⟩)).
4 Font setup

With polyglossia it is possible to associate a specific font with any script or language that occurs in the document. That font should always be defined as \langle script \rangle font or \langle language \rangle font. For instance, if the default font defined by \setmainfont does not support Greek, then one can define the font used to display Greek with:

\newfontfamily\greekfont[Script=Greek,⟨…⟩]{⟨font⟩}.

Note that polyglossia will use the font defined as is, so assure to do all necessary settings (please refer to the fontspec documentation for details). For instance, if \arabicfont is explicitly defined, then the option \texttt{Script=Arabic} should be included in that definition.

If a specific sans serif or monospace ('teletype') font is needed for a particular script or language, it can be defined by means of ← \langle script \rangle fontsf or \langle language \rangle fontsf and \langle script \rangle fonttt or \langle language \rangle fonttt, respectively.

Whenever a new language is activated, polyglossia will first check whether a font has been defined for that language or – for languages in non-Latin scripts – for the script it uses. If it is not defined, it will use the currently active font and – in the case of OpenType fonts – will attempt to turn on the appropriate OpenType tags for the script and language used, in case these are available in the font, by means of fontspec’s \addfontfeature. If the current font does not appear to support the script of that language, an error message is displayed.

5 Adapting hyphenation

5.1 Hyphenation exceptions

\TeX provides the command \texttt{\hyphenation{(exceptions)}} to globally define hyphenation exceptions which override the hyphenation patterns for specified words. The command takes as argument a space-separated list of words where hyphenation points are marked by a dash (if no dash is used, the respective word is not hyphenated at all):

\hyphenation{%
 po-ly-glos-sia
 LaTeX
}

These exceptions, however, apply to all languages. In addition to this, polyglossia provides the command ←
which can be used to define exceptions that only apply to a specific language or language variant, respectively.

5.2 Hyphenation disabling

In some very specific contexts (such as music score creation), TeX hyphenation is something to avoid as it may cause troubles. polyglossia provides two functions: \disablehyphenation and \enablehyphenation. Note that if you select a new language while hyphenation is disabled, it will remain disabled. If you re-enable it, the hyphenation patterns of the currently selected language will be activated.

6 Language-specific options and commands

This section gives a list of all languages for which options and end-user commands are defined. The default value of each option is given in italic.

6.1 afrikaans

Options:

- **babelshorthands** = false or true. ← if this is turned on, the following shorthands defined for fine-tuning hyphenation and micro-typography of Afrikaans words are activated:
 - "- adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \- in default TeX).
 - "~ for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.
 - "| disables a ligature at this position.
 - "" allows for a line break at this position (without hyphenation sign).
 - "/ a slash that allows for a subsequent line break. As opposed to \slash, hyphenation at the breakpoints preset in the hyphenation patterns is still allowed.
6.2 arabic

Options:
- calendar = gregorian or islamic (= hijri)
- locale = default,\(^5\) mashriq,\(^6\) libya, algeria, tunisia, morocco, or mauritania. This setting influences the spelling of the month names for the Gregorian calendar, as well as the form of the numerals (unless overridden by the following option).
- numerals = mashriq or maghrib (the latter is the default when locale = algeria, tunisia or morocco)
- abjadimnotail = false or true. ← Set this to true if you want the abjad form of the number three to be چ – as in the manuscript tradition – instead of the modern usage ﺝ.

Commands:
- \abjad
- \abjad and \abjadmaghribi (see section 8.3)
- \aemph to emphasize text with \overline. ◐ \textarabic{\aemph{\ت}} yields ﺝ. This command is also available for Farsi, Urdu, etc.

6.3 armenian

Options:
- variant ← = eastern or western
- numerals ← = armenian or arabic

6.4 belarusian ←

Options:
- babelshorthands = false or true. If this is turned on, the following shorthands are activated:
 - " - adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \-).
 - "- for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.
 - "| disables a ligature at this position.
 - " " allows for a line break at this position (without hyphenation sign).

\(^5\)For Egypt, Sudan, Yemen and the Gulf states.
\(^6\)For Iraq, Syria, Jordan, Lebanon and Palestine.
• numerals = arabic or cyrillic. Uses either Arabic numerals or Cyrillic alphanumerical numbering.
• spelling = modern or classic (= tarask). With spelling=classic, captions and dates adhere to the Taraškievica (or Belarusian classical) orthography rather than the standard orthography.

Commands:
\Asbuk
\Asbuk: produces uppercased Cyrillic alphanumerals, for environments such as enumerate. The command takes a counter as argument, e.g., \textbelarusian{\Asbuk{page}} produces ІД.
• \asbuk: same in lowercase

6.5 bengali ←

Options:
• numerals = Western, Bengali or Devanagari
• changecounternumbering = true or false (use specified numerals for headings and page numbers)

6.6 catalan

Options:
• babelshorthands = false or true. ← Activates the shorthands "ɬ" and "ɭ" to type geminated l’s.

Commands:
\l.l
\l.l and \L.L ← can be used to type a geminated l, as in collaborar, similar to babel (the glyph U+00B7 MIDDLE DOT is used as a geminating sign).
6.7 czech

Options:

- **babelshorthands** = *false* or *true*. ← if this is turned on, the following shorthands for Czech are activated:

 - " for an explicit hyphen sign which is repeated at the beginning of the next line when hyphenated, as common in Czech typesetting (only needed with **splithyphens=false**).
 - ‘ for Czech left double quotes (looks like „).
 - ‘ for Czech right double quotes (looks like “).
 - “> for Czech left double guillemets (looks like »).
 - “< for Czech right double guillemets (looks like «).

- **splithyphens** = *false* or *true*. ← According to Czech typesetting conventions, if a word with a hard hyphen (such as *je-li*) is hyphenated at this hyphen, a second hyphenation character is to be inserted at the beginning of the line that follows the hyphenation (*je-/-li*). By default, this is done automatically ← (if you are using LuaTeX, the luavlna package is loaded to achieve this). Set this option to *false* to disable the feature.

- **vlna** = *false* or *true*. ← According to Czech typesetting conventions, single-letter words (non-syllable prepositions) must not occur at line ends. Polyglossia takes care of this automatically by default ← (if you are using LuaTeX, the luavlna package is loaded to achieve this). Set this option to *false* to disable the feature.

6.8 dutch

Options:

- **babelshorthands** = *false* or *true*. ← if this is turned on, the following shorthands defined for fine-tuning hyphenation and micro-typography of Dutch words are activated:

 - “- adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \- in default \TeX).
 - “~ for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.
 - “| disables a ligature at this position.
allows for a line break at this position (without hyphenation sign).
"/ a slash that allows for a subsequent line break. As opposed to \\
hyphenation at the breakpoints preset in the hyphenation patterns is
still allowed.
\- In addition, the macro \- is redefined to allow hyphens in the rest of the
word (equivalent to "-.").

6.9 english

Options:
- variant = american (= us), usmax (same as ‘american’ but with additional
hyphenation patterns), british (= uk), australian, canadian ← or newzealand
- ordinalmonthday = true/false (true by default only when variant = british)

6.10 esperanto

Commands:
- \hodiau and \hodiaun are special forms of \today. The former produces
the date in Esperanto preceded by the article (la), which is the most com-
mon date format. The latter produces the same date format in accusative
case.

6.11 finnish

Options:
- babelshorthands = false or true. ← if this is turned on, the following
shorthands for fine-tuning hyphenation and micro-typography of Finnish
words are activated:
 " - adds a hyphenation point that does still allow for hyphenation at the
points preset in the hyphenation patterns (as opposed to \-).
 "- for a hyphen sign without a breakpoint. Useful for cases where the
hyphen should stick at the following syllable.
 "| disables a ligature at this position.
 " " allows for a line break at this position (without hyphenation sign).
 "/ a slash that allows for a subsequent line break. As opposed to \\
hyphenation at the breakpoints preset in the hyphenation patterns is
still allowed.
6.12 french

Options:

- **variant** = french or canadian (= acadian). ← Currently, the three variants do not differ; they are supported for compatibility with babel (where they do not differ either).

- **autospacing** = true or false. One of the most distinct features of French typography is the addition of extra spacing around punctuation and quotation marks (guillemets). By default, polyglossia adds these spaces automatically, so you don’t need to enter them. This option allows you to switch this feature off globally.

- **thincolonspace** ← = true or false. Normally, a full (non-breaking) interword space is inserted before a colon. Use this option if you prefer a thinner space as used before ; , !, and ?.

- **autospaceguillemets** = true or false. If you only want to disable the automatic addition of spacing after opening and before closing guillemets (and not at punctuation), set this to false. Note that the more general option autospacing overrides this.

- **autospacetypewriter** = true or false (default value = true). By default, automatic spacing is disabled in typewriter font. If this is enabled, spacing in typewriter context is the same as with roman and sans serif font, depending on the autospacing and autospaceguillemets settings (note that this was the default up to v. 1.44).

- **frenchfootnote** = true or false (default value = true). If true, footnotes start with a non-superscripted number followed by a dot, as common in French typography. Note that this might interfere with the specific footnote handling of classes or packages. Also note that this option is only functional (by design) if French is the main language.

- **frenchitemlabels** ← = true or false (default value = true). If true, itemize item labels use em-dashes throughout, as common in French typography. Note that this option is only functional (by design) if French is the main language. Also, it might interfere with list packages such as enumitem.

- **itemlabels** ← = \textemdash (default value = \textemdash). If frenchitemlabels is true, you can customize here the used item label of all levels.

- **itemlabeli** ← = \textemdash (default value = \textemdash). If frenchitemlabels is true, you can customize here the used item label of all levels.

7 Up to version 1.44, the option was called *automaticspacesaroundguillemets*. For backwards compatibility reasons, the more verbose old option is still supported.

8 Babel’s syntax *OriginalTypewriter* is also supported.
true, you can customize here the used item label of the first level.

- **itemlabeli** ← (cmd) (default value = \textemdash). If \frenchitemlabels is true, you can customize here the used item label of the second level.
- **itemlabelii** ← (cmd) (default value = \textemdash). If \frenchitemlabels is true, you can customize here the used item label of the third level.
- **itemlabeliv** ← (cmd) (default value = \textemdash). If \frenchitemlabels is true, you can customize here the used item label of the fourth level.

Commands:

- **\NoAutoSpacing** ← disables automatic spacing around punctuation and quotation marks in all following text. The command can also be used locally if braces are used for grouping: {\NoAutoSpacing foo:bar}
- **\AutoSpacing** ← enables automatic spacing around punctuation and quotation marks in all following text. The command can also be used locally if braces are used for grouping: {\AutoSpacing regarde!}

6.13 **gaelic** ←

Options:
- **variant** = irish or scottish

6.14 **georgian** ←

Options:
- **babelshorthands** = false or true. If this is turned on, the following shorthands are activated:
 - **“** adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \-).
 - **“-** for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.
 - **“|** disables a ligature at this position.
 - **“** allows for a line break at this position (without hyphenation sign).
 - **“---** Cyrillic emdash in plain text.
 - **“--** Cyrillic emdash in compound names (surnames).
 - **“---*** Cyrillic emdash for denoting direct speech.
 - **“,”** thinspace for initials with a breakpoint in following surname.
“‘” for German left double quotes (looks like „).
“‘” for German right double quotes (looks like „).
“<” for French left double quotes (looks like «).
“>” for French right double quotes (looks like »).

- **numerals** = arabic or georgian. Uses either Arabic numerals or Georgian alphanumerical numbering.
- **oldmonthnames** = true or false (default: false). Uses traditional Georgian month names.

6.15 german

Options:

- **variant** = german, austrian or swiss. ← Setting variant=austrian or variant=swiss uses some lexical variants. With spelling=old, variant=swiss furthermore loads specific hyphenation patterns.
- **spelling** = new (= 1996) or old (= 1901): indicates whether hyphenation patterns for traditional (1901) or reformed (1996) orthography should be used. The latter is the default.
- **latesthyphen** = false or true: if this option is set to true, the latest (experimental) hyphenation patterns ’(n)german-x-latest’ will be loaded instead of ’german’ or ‘ngerman’. NB: This is based on the file language.dat that comes with TeXLive 2008 and later.
- **babelshorthands** = false or true: ← if this is turned on, all shorthands defined in babel for fine-tuning hyphenation and micro-typography of German words are activated.

*ck for ck to be hyphenated as k-k (1901 spelling).
*ff for ff to be hyphenated as ff-f (1901 spelling); this is also available for the letters l, m, n, p, r and t.
*| disables a ligature at this position (e.g., Auf” | lage).
*“= for an explicit hyphen with a breakpoint, allowing for hyphenation at the other points preset in the hyphenation patterns (as opposed to plain -).
*“~ for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable, e.g., bergauf und “~ab.
*“¨ adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \-).
allows for a line break at this position (without hyphenation sign); e.g., (pseudo"")"wissenschaftlich.

/ a slash that allows for a subsequent line break. As opposed to \slash, hyphenation at the breakpoints preset in the hyphenation patterns is still allowed.

There are also four shorthands for quotation signs:

\` for German left double quotes („)

\‘ for German right double quotes (”)

\< for French left double quotes («)

\> for French right double quotes (»).

- **script** = latin or blackletter ← (fraktur ←). Setting script=blackletter adapts the captions for typesetting German in blackletter type (using the long s (ſ) where appropriate).

6.16 greek

Options:
- **variant** = monotonic (= mono), polytonic (= poly), or ancient
- **numerals** = greek or arabic
- **attic** = false/true

Commands:
- \Greeknumber
- \greeknumber (see section 8.3).
- \atticnumeral (= \atticnum) (activated with the option attic=true), displays numbers using the acrophonic numbering system (defined in the Unicode range U+10140–U+10174).\(^9\)

6.17 hebrew

Options:
- **numerals** = hebrew or arabic
- **calendar** = hebrew or gregorian
- **marcheshvan** = true or false (default value = true). If true, the second month of the civil year will be output as מארשון (Marcheshvan) rather than השון (Heshvan), which is the default.

\(^9\)See the documentation of the xgreek package for more details.
Commands:
\hebrewnumeral
 • \hebrewnumeral (= \hebrewalph) (see section 8.3).
\hebrewalph
 • \aemph (see section 6.2).

6.18 hindi ←

Options:
 • numerals = Western or Devanagari

6.19 hungarian

Options:
 • swapstrings = all, captions, headings, headers, hheaders or none ←

In Hungarian, some caption strings need to be in a different order than in other languages (e.g., 1. fejezet instead of Chapter 1). By default, polyglosia tries hard to provide the correct order for different classes and packages (standard classes, KOMA-script, memoir, and titlesec package should work, as well as fancyhdr and caption). However, since the definition of these strings is not standardized, the redefinitions might not work and even interfere badly if you use specific classes or packages that redefine the respective strings themselves. In this case, you can disable some or all changes. The possibilities are:
 • all: Redefine figure and table captions, part and chapter headings, and running headers (= default setting)
 • captions: Redefine figure and table captions only
 • headings: Redefine part and chapter headings only
 • headers: Redefine running headers only
 • hheaders: Redefine part and chapter headings as well as running headers
 • none: Do not redefine anything

Commands:
\ontoday
 • \ontoday (= \ondatehungarian): special form of \today which produces a slightly different date format as used in prepositional phrases (such as ‘on February 10th’) in Hungarian.
6.20 italian

Options:

- **babelshorthands** = *false* or *true*. Activates the " character as a switch to perform etymological hyphenation when followed by a letter. Furthermore, the following shorthands are activated:
 - "" double raised open quotes (the Italian keyboard misses the backtick).
 - "< open guillemet (looks like «).
 - "> closing guillemet (looks like »).
 - "/ a slash that allows for a subsequent line break. As opposed to \\slash, hyphenation at the breakpoints preset in the hyphenation patterns is still allowed.
 - "+ adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \\-).

6.21 korean

Options:

- **variant** = plain, classic or modern: for spacing before/after CJK punctuations. ‘classic’ is suitable for text with no interword spaces, ‘modern’ for text with interword spaces.
- **captions** = hangul or hanja

6.22 kurdish

Options:

- **variant** = kurmanji or sorani
- **script** = Arabic or Latin. Defaults are Arabic for Sorani and Latin for Kurmanji.
- **numerals** = western or eastern. Defaults are western for Latin and eastern for Arabic script, depending on the selection above.
- **abjadimnotail** = *false* or *true*. Set this to true if you want the *abjad* form of the number three to be ج – as in the manuscript tradition – instead of the modern usage ٣.
Table 3. Spelling differences between the Latin language variants.

The capitalization of month names and the use of \textit{i/j} may be affected by the \texttt{capitalizemonth} and the \texttt{usej} option.

<table>
<thead>
<tr>
<th></th>
<th>classic</th>
<th>medieval</th>
<th>modern</th>
<th>ecclesiastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iauarii</td>
<td>Iauarrii</td>
<td>Iauarrii</td>
<td>iauarrii</td>
<td></td>
</tr>
<tr>
<td>Novembris</td>
<td>Novembris</td>
<td>Novembris</td>
<td>novembris</td>
<td></td>
</tr>
<tr>
<td>Praefatio</td>
<td>Praefatio</td>
<td>Praefatio</td>
<td>Praefatio</td>
<td></td>
</tr>
</tbody>
</table>

\texttt{\MakeUppercase{Iulius}} yields:

| | IULIVS | IULIVS | IULIUS | IULIUS |

Commands:

- \texttt{\ontoday}: special form of \texttt{\today} which produces a slightly different date format as used in prepositional phrases (as in 'on February 10th'). Only available for Latin script.
- \texttt{\abjad} (see section 8.3)
- \texttt{\aemph} (see section 6.2)

6.23 lao ←

Options:

- \texttt{numerals} = lao or \texttt{arabic}

6.24 latin

Options:

- \texttt{variant} = classic, medieval, \texttt{modern}, or ecclesiastic ←

These variants refer to different spelling conventions. The \texttt{classic} and the \texttt{medieval} variant do not use the letters \texttt{U} and \texttt{V}, but only \texttt{V} and \texttt{u}. This concerns predefined terms like month names as well as the behaviour of the \texttt{\MakeUppercase} and the \texttt{\MakeLowercase} command. The \texttt{medieval} and the \texttt{ecclesiastic} variant use the ligatures \texttt{æ} and \texttt{œ}. See table 3 for examples.

Furthermore, the \texttt{ecclesiastic} variant takes care for a punctuation spacing similar to French, but with smaller spaces, as provided for PDF\TeX{} by the \texttt{ecclesiastic} package.

- \texttt{hyphenation} ← = classic, modern, or liturgical
There are three different sets of hyphenation patterns for Latin. Separate documentation for them is available on the Internet. Each of the four variants mentioned above has its default set of hyphenation patterns as indicated by table 4. Use the hyphenation option if the default style does not fit your needs. Note that the liturgical hyphenation patterns are the default of none of the language variants. To use them, you have to say hyphenation=liturgical in any case.

- **ecclesiasticfootnotes** ← true or false
 Use footnotes as provided by the *ecclesiastic* package, which typesets footnotes with ordinary instead of superior numbers and without indentation. As many ecclesiastic documents and liturgical books use footnotes that are very similar to the ordinary \TeX ones, we do not use this footnote style as default even for the ecclesiastic variant. Note that this option is only possible if Latin is the main language of your document.

- **usej** ← true or false
 Use \textit{j/j} in predefined terms. The letter \textit{j} is not of ancient origin. In early modern times, it was used to distinguish the consonantic \textit{i} from the vocalic \textit{i}. Nowadays, the use of \textit{j} has disappeared from most Latin publications. So false is the default value for all four language variants. Use this option if you prefer \textit{Januarii} and \textit{Maji} to \textit{Ianuarii} and \textit{Maii}.

- **capitalizemonth** ← true or false
 Capitalize the month name when printing dates (using the \texttt{today} command). Traditionally, month names are capitalized. However, in recent liturgical books they are lowercase. So true is the default value for the variants classic, medieval, and modern, whereas false is the default value for the ecclesiastic variant.

babelshorthands = true or false
Enable the following shorthands inherited from babel-latin and the ecclesiastic package.

```
"<    for « (left guillemet)
">   for » (right guillemet)
"    If no other shorthand applies, " before any letter character defines an optional break point allowing further break points within the same word (as opposed to the \- command).
"|   the same as ", but also possible before non-letter characters
'
   for á (a with acute), also available for é, í, ó, ú, â, and ã
'A  for Â (A with acute), also available for Ê, Í, Õ, Ó, Ý, Ý̂, Â̂, and Ê̂

The following shorthands are only available for the medieval and the ecclesiastic variant.

*ae  for æ (ae ligature), also available for æ
*Ae  for Æ (AE ligature), also available for Õ
*AE  for Æ (AE ligature), also available for Õ
'ae  for æ (ae ligature with acute), also available for ñ
'Ae  for Æ (AE ligature with acute), also available for Õ
'AE  for Æ (AE ligature with acute), also available for Õ
```

prosodicshorthands ← = true or false
Enable shorthands for prosodic marks (macrons and breves) very similiar to those provided by babel-latin using the withprosodicmarks modifier.

Note that the active "= character used for macrons will cause problems with commands using key=value interfaces, e.g., \includegraphics[scale=2]{...}. Use \shorthandoff{"=} before such commands (and \shorthandon{"=} thereafter) within every environment with prosodic shorthands enabled.

The following shorthands are available.

```
=a   for à (a with macron), also available for é, ì, ó, ù, and ý
=A   for Â (A with macron), also available for Ê, Ì, Õ, Ó, Ý, and Ý̂. Note that a macron above the letter V is only displayed if your font supports the Unicode character 0304 (combining macron).
=ae  for âë (ae diphthong with macron), also available for âë, ëë, and ãë. Note that macrons above diphthongs are only displayed if your font supports the Unicode character 035E (combining double macron).
```
=Åe for Åē (Åe diphthong with macron), also available for Åū, Ėū, and ůē.

=ÅE for ÅŒ (ÅŒ diphthong with macron), also available for ÅU, EU, and ůŒ.

^a for á (a with breve), also available for ē, ĩ, ō, ŭ, and ų. Note that a breve above the letter y is only displayed if your font supports the Unicode character 0306 (combining breve).

^A Å (A with breve), also available for Ė, Ī, Ō, Ū, V̆, and Y̆. Note that breves above the letters V and Y are only displayed if your font supports the Unicode character 0306 (combining breve).

6.25 malay

Options:

‣ variant ← = indonesian (= bahasai in babel) or malaysian (= bahasam in babel)

6.26 mongolian ←

Currently, only the Khalkha variety in Cyrillic script is supported.

Options:

‣ babelshorthands = false or true. If this is turned on, the following shorthands are activated:

"- adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \.-).

"- for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.

"| disables a ligature at this position.

" " allows for a line break at this position (without hyphenation sign).

"-- Cyrillic emdash in plain text.

"-- Cyrillic emdash in compound names (surnames).

"--* Cyrillic emdash for denoting direct speech.

", thinspace for initials with a breakpoint in following surname.

" " for German left double quotes (looks like „).
for German right double quotes (looks like ”).
“<” for French left double quotes (looks like «).
“>” for French right double quotes (looks like »).
- **numerals** = arabic or cyrillic. Uses either Arabic numerals or Cyrillic alphanumerical numbering.

Commands:
- **\Asbuk**: produces uppercased Cyrillic alphanumerals, for environments such as enumerate. The command takes a counter as argument, e.g., `\textmongolian{\Asbuk{page}}` produces K3.
- **\asbuk**: same in lowercase

6.27 norwegian

Options:
- **variant** ← bokmal (= ’norsk’ in babel) or nynorsk

6.28 persian

Options:
- **numerals** = western or eastern
- **abjadimnotail** = false or true. ← Set this to true if you want the abjad form of the number three to be ↨ – as in the manuscript tradition – instead of the modern usage ٣.

Commands:
- **\abjad**: (see section 8.3)
- **\aemph**: (see section 6.2).

6.29 portuguese

Options:
- **variant** ← brazilian or portuguese

v1.45
6.30 russian

Options:

- **babelshorthands** = *false* or *true*. If this is turned on, the following short-hands are activated:
 - “-“ adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \-).
 - “-“ for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.
 - “|“ disables a ligature at this position.
 - ““ allows for a line break at this position (without hyphenation sign).
 - “---” Cyrillic emdash in plain text.
 - “--” Cyrillic emdash in compound names (surnames).
 - “--*” Cyrillic emdash for denoting direct speech.

- **indentfirst** ← *true* or *false*. By default, all paragraphs are indented in Russian, also those after a chapter or section heading. If this option is false, the latter paragraphs are not indented, as normal in \LaTeXX.

- **spelling** = *modern* or *old* (for captions and date only, not for hyphenation)

- **numerals** = *arabic* or *cyrillic*. Uses either Arabic numerals or Cyrillic alphanumerical numbering.

Commands:

\Asbuk \(\Asbuk\): produces uppercased Cyrillic alphanumerals, for environments such as enumerate. The command takes a counter as argument, e.g., \textrussian{\Asbuk{page}} produces КИ.

\asbuk \(\asbuk\): same in lowercase

6.31 sami ←

Currently support for Sami is limited to Northern Sami.

6.32 sanskrit

Options:

- **script** = *Devanagari* ←, Gujarati, Malayalam, Bengali, Kannada, Telugu or Latin. The value is passed to fontspec in cases where the respective \(\langle\text{script}\rangle\text{font}\) is not defined. This can be useful if you typeset Sanskrit texts in scripts other than Devanagari.
• **numerals** = *Devanagari* ← or Western

6.33 Serbian

Options:

- **script** = *Cyrillic* or *Latin*.
- **numerals** = *arabic* or *cyrillic*. Uses either Arabic numerals or Cyrillic alphanumerical numbering.

Commands:

- **\Asbuk**: produces uppercased Cyrillic alphanumerals, for environments such as `enumerate`. The command takes a counter as argument, Example: \textserbian[numerals=cyrillic]{\Asbuk{page}} produces КѲ.
- **\asbuk**: same in lowercase

6.34 Slovak

Options:

- **babelshorthands** = *false* or *true*. ← if this is turned on, the following shorthands for Slovak are activated:

 - “” for an explicit hyphen sign which is repeated at the beginning of the next line when hyphenated, as common in Slovak typesetting (only needed with `splitthyphens=false`).
 - “|” disables a ligature at this position.
 - “-” for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.
 - “ -” adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to `-`).
 - “ ” allows for a line break at this position (without hyphenation sign).
 - “/” a slash that allows for a subsequent line break. As opposed to `\slash`, hyphenation at the breakpoints preset in the hyphenation patterns is still allowed.
 - “ ‘” for Slovak left double quotes (looks like „).
 - “ ’” for Slovak right double quotes (looks like “).
 - “>” for Slovak left double guillemets (looks like »).
for Slovak right double guillemets (looks like «).

- **splithyphens** = *false* or *true*. ← According to Slovak typesetting conventions, if a word with a hard hyphen (such as *je-li*) is hyphenated at this hyphen, a second hyphenation character is to be inserted at the beginning of the line that follows the hyphenation (*je-/-li*). By default, this is done automatically (if you are using LuaTeX, the *luavlna* package is loaded to achieve this). Set this option to *false* to disable the feature.

- **vlna** = *false* or *true*. ← According to Slovak typesetting conventions, single-letter words (non-syllable prepositions) must not occur at line ends. **Polyglossia** takes care of this automatically by default (if you are using LuaTeX, the *luavlna* package is loaded to achieve this). Set this option to *false* to disable the feature.

6.35 slovenian

Options:
- **localalph** = *true* or *false*

6.36 sorbian

Options:
- **variant** = *lower* or *upper*
- **olddate** = *true* or *false* (default value = true). If true, \today will use traditional Sorbian month names (*i.e.*, it will be synonymous to \oldtoday below)

Commands:
- \oldtoday: outputs the current date using traditional Sorbian month names, even if olddate is false.

6.37 spanish

Options:
- **variant** = *spanish* or *mexican*. ←
- **spanishoperators** = all, accented, spaced or none or *false* (default value = all). ← Determines of and how math operators are localized to Spanish.
 - accented causes some math operators to use accents where usual in Spanish (*l*ím, *l*ím *s*up, *l*ím *i*nf, *m*áx, *m*ín, *i*nf, *m*ód).
- spaced causes some math operators to use spaces where usual in Spanish (arc cos, arc sen, arc tg).
- all activates accented and spaced and furthermore provides Spanish localizations of \sin (sen), \tan (tg), \sinh (senh), and \tanh (tgh).
- none does no localization at all (default setting).

Commands:

\[v1.46\]
\[
\arcsen\]
\[
\arctg\]
\[
\sen\]
\[
\senh\]
\[
\tg\]
\[
\tgh\]
\[
\spanishoperator\]

- \arcsen: alias to \arcsin (babel compatibility)
- \arctg: alias to \arctan (babel compatibility)
- \sen: alias to \sin (babel compatibility)
- \senh: alias to \sinh (babel compatibility)
- \tg: alias to \tan (babel compatibility)
- \tgh: alias to \tanh (babel compatibility)
- \spanishoperator: allows you to define further localized operators. For instance, \spanishoperator{cotg} defines a command \cotg that outputs \cotg in math. The optional argument of the command lets you specify the spelling, if needed, e.g., \spanishoperator[arc\,ctg]{arcctg}.

6.38 syriac

Options:

- **numerals** = western (i.e., 1234567890), eastern (for which the Oriental Arabic numerals are used: ٠١٢٣٤٥٦٧٨٩٠), or abjad.

\[v1.0.1\]

Commands:

\[
\abjadsyriac\]
\[
\aemph\]

- \abjadsyriac (see section 8.3)
- \aemph (see section 6.2).

6.39 thai

Options:

- **numerals** = thai or arabic

To insert word breaks, you need to use an external processor. See the documentation to Thai-latex and the file testthai.tex that comes with this package.

6.40 tibetan

Options:

- **numerals** = tibetan or arabic
6.41 ukrainian

Commands:
\Asbuk • \Asbuk: produces the uppercase Ukrainian alphabet, for environments such as enumerate
\asbuk • \asbuk: same in lowercase

6.42 welsh

Options:
• date = long or short

7 Modifying or extending captions, date formats and language settings

Polyglossia uses the following macros to define language-specific captions (i.e., strings such as “chapter”), date formats and additional language settings (\lang is to be replaces with the respective language name):

\captions{lang} • \captions{lang} stores definitions of caption strings (such as, in the case of English, \def\chaptername{Chapter})
\date{lang} • \date{lang} stores definitions of date formats (usually redefinitions of \today, in some cases also definitions of additional date commands)
\blockextras{lang} • \blockextras{lang} stores macros that are to be executed when the language \lang is activated via \selectlanguage command or the \lang environment
\inlineextras{lang} • \inlineextras{lang} stores macros that are to be executed when the language \lang is activated locally via \text{\lang} command
\noextras{lang} • \noextras{lang} stores macros that are to be executed when the language \lang is closed

In order to redefine internal macros, we recommend to use the command \gappto. For compatibility with babel the command \addto is also available to the same effect. For instance, to change the \chaptername for language lingua, you can do this:
\gappto\captionslingua{\def\chaptername{Caput}}

Note that this needs to be done after the respective language has been loaded with \setmainlanguage or \setotherlanguage.
Specifically for package authors, analogous commands are provided which are only executed if a specific language variety is used. As opposed to the macros above, these refer to babel names. Other than that, the function is identical:

\captions@bbl@⟨babelname⟩
\date@bbl@⟨babelname⟩
\blockextras@bbl@⟨babelname⟩
\inlineextras@bbl@⟨babelname⟩
\noextras@bbl@⟨babelname⟩

By default, these macros are undefined. If they are defined (e.g., by an external package), they will be executed after their respective ⟨lang⟩ counterpart and thus can be used to overwrite definitions of the former. Again, use \gappto to define/modify these macros. For instance, to add a new caption \footnotename to the Swiss variety of German (babel name nswissgerman), you can do this:

\gappto\captions@bbl@nswissgerman{\def\footnotename{Fussnote}}

If you do this in a document preamble rather than in a package, you need to embrace the redefinition by \makeatletter and \makeatother due to the @ in the macro names.

8 Script-specific numbering

Languages and scripts have specific numbering conventions. Some use decimal digits (e.g., Arabic numerals), some use alphabetic or alphanumerical notation (e.g., Roman numbering). In some cases, different conventions are available (e.g., Mashriq or Maghrib numbering in Arabic script, Arabic or Hebrew [= alphanumeric] numbering in Hebrew).

If the latter is the case, polyglossia provides language options which allow you to select or switch to the suitable convention. With the appropriate language option set, polyglossia will automatically convert the output of internal \TeX counters to their localized forms, for instance to display page, chapter and section numbers.

For manual input of numbers, macros are provided. These convert Arabic numeric input to the respective local decimal digit (see sec. 8.2), alphanumerical representation (see sec. 8.3) or whatever is appropriate (see sec. 8.1). The possibilities are described in turn.
8.1 General localization of numbering

As of 1.45, \textit{polyglossia} provides a generic macro \texttt{\localnumeral} which converts numbers to the current local form (which might be script-specific decimal digit, an alphabetic numbering or something else). For instance in an Arabic environment \texttt{\localnumeral{42}} yields ٤٢, whereas in an Hebrew environment, it results in ממב with numerals=hebrew, and 42 with numerals=arabic. Note that, as opposed to the various digits macros (described in sec. 8.2), the argument of \texttt{\localnumeral} must consist of numbers only.

For the conversion of counters, the starred version \texttt{\localnumeral*} is provided. This takes a counter as argument. For instance in an Arabic environment \texttt{\localnumeral*[page]} yields ٤٣.

For scripts with alphanumeric numbering, the variants \texttt{\localnumeral} and \texttt{\Localnumeral} provide the uppercased versions. \texttt{\Localnumeral*} All these macros provide the following options:

- \texttt{[lang=]} \texttt{local, main, or <language>}. Output number in the local form of the currently active language for \texttt{local}, the main language of the document for \texttt{main}, and any (loaded) language for \texttt{<language>} (e.g., \texttt{\localnumeral[lang=arabic]{42}}).

8.2 Non-Western decimal digits

In addition to the generic macros described above, \textit{polyglossia} provides language-specific conversion macros which can be used if the generic ones do not suit the need.\footnote{A third method are so-called TECKit fontmappings. Those can be activated with the \texttt{fontspec} Mapping option, using \texttt{arabicdigits}, \texttt{farsidigits} or \texttt{thaidigits}. For instance if \texttt{\arabicfont} is defined with the option Mapping=arabicdigits, typing \texttt{\textarabic{2010}} results in ٠١٠٢. Note that this method has some drawbacks, though, for instance when the value of a counter has to be written and read from auxiliary files. So please use this with care.} The macros have the form \texttt{\<script>digits}. They convert Arabic numerical input and leave every other input untouched. In an Arabic context, for instance, \texttt{\arabicdigits{9182/738543-X}} yields ٩١٨٢/٧٣٨٥٤٣-X.

Currently, the following macros are provided:

- \texttt{\arabicdigits}
- \texttt{\bengalidigits}
- \texttt{\devanagaridigits}
- \texttt{\farsidigits}
- \texttt{\kannadadigits}
- \texttt{\khmerdigits}
8.3 Non-Latin alphabetic numbering

For languages which use special (non-Latin) alphanumerical notation12, dedicated macros are provided.

They work in a similar way than the \texttt{\LaTeX} digits macros described above: They take Arabic numerical input and output the respective value in the local alphabetic numbering scheme (most of these macros are equivalent to \texttt{\LaTeXnumeral} and \texttt{\LaTeXnumeral} in the respective context).

The following macros are provided:

\texttt{\abjad} outputs Arabic \textit{abjad} numbers according to the Mashriq varieties. Example: \texttt{\abjad{1863}} yields غضسج.

\texttt{\abjadmaghribi} outputs Arabic \textit{abjad} numbers according to the Maghrib varieties. Example: \texttt{\abjadmaghribi{1863}} yields مظلح.

\texttt{\abjadsyriac} outputs Syriac abjad numerals. Example: \texttt{\abjadsyriac{463}} yields ﻭسܓ.

\texttt{\armeniannumeral} produces Armenian alphabetic numbering. Example: \texttt{\armeniannumeral{1863}} yields ՌՊԿԳ.

\texttt{\georgiannumeral} produces Georgian alphabetic numbering. Example: \texttt{\georgiannumeral{1863}} yields ჩყჲგ.

\texttt{\greeknumeral} produces Greek alphabetic numbering, \texttt{\Greeknumeral} puts uppercased variants. Example: \texttt{\greeknumeral{1863}} yields ἀωξγʹ, \texttt{\Greeknumeral{1863}} results in ΑΩΞΓʹ.

\texttt{\hebrewnumeral}, \texttt{\Hebrewnumeral} and \texttt{\Hebrewnumeralfinal} generate variants of Hebrew alphanumeric numerals. The commands behave exactly as they do in babel: \texttt{\hebrewnumeral} outputs the numbers without any decoration, \texttt{\Hebrewnumeral} adds \textit{gershayim} before the last letter, \texttt{\Hebrewnumeralfinal} uses in addition the final forms of Hebrew letters. Examples: \texttt{\hebrewnumeral{1750}} yields מִלָנ, \texttt{\Hebrewnumeral{1750}}

13A fine guide to numerals in Syriac can be found at \url{http://www.garzo.co.uk/documents/syriac-numerals.pdf}.
yields י׳תש״נ, and \Hebrewnumeralfinal{1750} yields י׳תש״ן.

\russian
\russiannumeral produces Russian numbering, with uppercased variant (for alphanumerical variant) via \russiannumeral. Depending on the numerals option in the Russian language selection, this is either Arabic digit or Cyrillic alphanumercial output.

Example: With numerals=latin \russiannumeral{19} yields 19, with numerals=cyrillic \russiannumeral{19} results in іѳ.

\serbian
\serbiannumeral produces Serbian numbering, with uppercased variant (for alphanumerical variant) via \serbiannumeral. Depending on the numerals option in the Serbian language selection, this is either Arabic digit or Cyrillic alphanumercial output.

Example: With numerals=latin \serbiannumeral{19} yields 19, with numerals=cyrillic \serbiannumeral{19} results in іѳ.

9 Footnotes in right-to-left context

With languages that use right-to-left scripts, footnote apparatuses are usually placed at the right side of the page bottom. Consequently, the footnote rule also is to be placed right. Things get more tricky, though, if right-to-left and left-to-right scripts are mixed. Then you might want to put the footnotes on some pages left, on some right, or even mix positions on a page. Thus, footnote handling in right-to-left context sometimes needs manual intervention. This is described in what follows.

9.1 Horizontal footnote position

When right-to-left languages are used, the \footnote command becomes sensitive to the text directionality. The footnote is always placed on the side that is currently the origin of direction: on the left side of the page in LTR paragraphs and on the right in RTL paragraphs.

For cases where this is not desired, two additional footnote commands are provided: \RTLfootnote and \LTRfootnote. \LTRfootnote always places the footnote on the left side, notwithstanding the current directionality. Likewise, \RTLfootnote always places it on the right side. Like \footnote, \RTLfootnote and \LTRfootnote provide an optional argument to customize the number.
9.2 Footnote rule length and position

The default placement of the footnote rule differs in \LaTeX{} and \LuaTeX{} output (this is due to differences in the bidi and luabidi packages). With \LaTeX{}, footnote rules are always placed left, which is often wrong in RTL context. With \LuaTeX{}, by contrast, the rule is placed always right if the main language is a right-to-left language, and always left if the main language is a left-to-right language, which is the right thing in many cases.

In both cases, you can change the default behavior as follows:

\begin{itemize}
 \item Put $\texttt{\leftfootnoterule}$ in the preamble to have all rules left-aligned.
 \item Put $\texttt{\rightfootnoterule}$ in the preamble to have all rules right-aligned.
 \item Put $\texttt{\autofootnoterule}$ in the preamble to have automatic placement depending on the context (see below for elaboration).
 \item Put $\texttt{\textwidthfootnoterule}$ in the preamble to have a rule that spans the whole text width.
\end{itemize}

With $\texttt{\autofootnoterule}$, the first footnote on the current page determines the placement. Note that this automatic can fail with footnotes at page boundaries that differ in directionality from the first footnote on the page. You can work around such cases by switching to $\texttt{\rightfootnoterule}$ or $\texttt{\leftfootnoterule}$ on these pages.

Note also that the rule switches might interfere in bad ways with packages or classes that redefine footnotes themselves. This is also the reason why $\texttt{\autofootnoterule}$ is not used by default.

10 Calendars

10.1 Hebrew calendar (hebrewcal.sty)

The package \texttt{hebrewcal.sty} is almost a verbatim copy of \texttt{hebcal.sty} that comes with babel. The command $\texttt{\Hebrewtoday}$ formats the current date in the Hebrew calendar (depending of the current writing direction this will automatically set either in Hebrew script or in roman transliteration).

10.2 Islamic calendar (hijrical.sty)

This package computes dates in the lunar Islamic (Hijra) calendar.\footnote{It makes use of the arithmetical algorithm in chapter 6 of Reingold & Gershowitz, \textit{Calendrical calculation: the Millenium edition} (Cambridge University Press, 2001).} It provides two macros for the end-user. The command
\HijriFromGregorian \HijriFromGregorian{(year)}{(month)}{(day)}

\Hijritoday sets the counters Hijriday, Hijrimonth and Hijriyear. \Hijritoday formats the Hijri date for the current day. This command is now locale-aware ← its output will differ depending on the currently active language. Presently \texttt{polyglossia}'s language definition files for Arabic, Farsi, Urdu, Turkish and Malay provide a localized version of \Hijritoday. If the formatting macro for the current language is undefined, the Hijri date will be formatted in Arabic or in roman transliteration, depending of the current writing direction. You can define a new format or redefine one with the command \DefineHijriDateFormat{<lang>}{<code>}. The command \Hijritoday also accepts an optional argument to add or subtract a correction (in days) to the date computed by the arithmetical algorithm.15 For instance if \Hijritoday yields the date “7 Rajab 1429” (which is the date that was displayed on the front page of \texttt{aljazeera.net} on 11th July 2008), \Hijritoday[1] would rather print “8 Rajab 1429” (the date indicated the same day on the site \texttt{gulfnews.com}).

\subsection{10.3 Farsi (jalālī) calendar (farsical.sty)}

This package is an almost verbatim copy of \texttt{Arabiftoday.sty} (in the \texttt{Arabi} package), itself a slight modification of \texttt{ftoday.sty} in Farsi\TeX.16 Here we have renamed the command \texttt{ftoday} to \texttt{Jalalitoday}. Example: today is 24 Ābān 1398.

\subsection{11 Accessing language information}

The following is specifically relevant to package authors who need information about the languages in use.

In order to get such information, \texttt{polyglossia} provides the following macros:

- \texttt{\languagename} stores the currently active (polyglossia) language name.
- \texttt{\mainlanguagename} stores the (polyglossia) language name of the main document language.
- \texttt{\languagevariant} stores the language variant if set. The macro is empty if no variant has been set.

15The Islamic calendar is indeed a purely lunar calendar based on the observation of the first visibility of the lunar crescent at the beginning of the lunar month, so there can be differences between different localities, as well as between civil and religious authorities.

16One day I may rewrite \texttt{farsical} from scratch using the algorithm in Reingold & Gershowitz (ref. n. 14).
\mainlanguagevariant\mainlanguagevariant stores the language variant of the main document language if set. The macro is empty if no variant has been set.

\babelname\babelname stores the corresponding name of the currently active language (variant) in babel. This might not only be useful if you want to support both babel and polyglossia, but also since this name is unique for a given language variety (e.g., ngerman, german, swissgerman etc.). Note that this macro is also defined for languages that are not supported in babel. In that case, they are equal to the polyglossia language name.

\mainbabelname\mainbabelname analogously stores the name of document’s main language (variant) in babel.

If you want to have a full list of loaded languages/variants, use the following macros:

\xpg@loaded\xpg@loaded stores a comma-separated list of all loaded languages (polyglossia name)
\xpg@vloaded\xpg@vloaded stores a comma-separated list of all loaded variants
\xpg@bloaded\xpg@bloaded stores a comma-separated list of babel names of all language variants

Finally, you can test whether a language is loaded by
\iflanguageloaded{⟨lang⟩}{⟨true⟩}{⟨false⟩}\iflanguageloaded{⟨lang⟩}{⟨true⟩}{⟨false⟩}
where (lang) is a polyglossia language name, or
\ifbabellanguageloaded{⟨lang⟩}{⟨true⟩}{⟨false⟩}\ifbabellanguageloaded{⟨lang⟩}{⟨true⟩}{⟨false⟩}
where (lang) is a babel language name.

12 Acknowledgements (by François Charette)

Polyglossia is notable for being a recycle box of previous contributions by other people. I take this opportunity to thank the following individuals, whose splendid work has made my task almost trivial in comparison: Johannes Braams and the numerous contributors to the babel package (in particular Boris Lava and others for its Hebrew support), Alexej Kryukov (antomega), Will Robertson (fontspec), Apostolos Syropoulos (xgreek), Youssef Jabri (arabi), and Vafa Khalighi (xepersian and bidi). The work of Mojca Miklavec and Arthur Reutenauer on hyphenation patterns with their package hyph-utf8 is of course invaluable. I should also thank other individuals for their assistance in supporting specific languages: Yves Codet (Sanskrit), Zdeněk Wagner (Hindi), Mikhal Oren (Hebrew), Sergey Astanin (Russian), Khaled Hosny (Arabic), Sertoğ Ö. Yildiz (Turkish), Kamal Abdali (Urdu), and several other members of the XƎTeX
user community, notably Enrico Gregorio, who has sent me many useful suggestions and corrections and contributed the \newxetexintercharclass mechanism in xelatex.ini which is now used by polyglossia. More recently, Kevin Godby of the Ubuntu Manual project has contributed very useful feedback, bug hunting and, with the help of translators, new language definition files for Asturian, Lithuanian, Occitan, Bengali, Malayalam, Marathi, Tamil, and Telugu. It is particularly heartening to realize that this package is used to typeset a widely-read document in dozens of different languages! Support for Lao was also added thanks to Brian Wilson. I also thank Alan Munn for kindly proof-reading the penultimate version of this documentation. And of course my gratitude also goes to Jonathan Kew, the formidable author of X\LaTeX!

13 More acknowledgements (by the current development team)

Many thanks to all the people who have contributed bugfixes and new features to polyglossia since we took over. In alphabetical order: Ignas Anikevicius, Sina Ahmadi, Wouter Bolsterlee, Christian Buhtz, Zgarbul Andrey, Oleg Domanov, Philipp Gesang, Kevin Godby, Enrico Gregorio, Khaled Hosny, Najib IdriSSI, user julroy67, Dohyun Kim, Phil Kime, Mike Kroutikov, Ivan KokoN, Caleb MacLennan, JosÉ Mancera, Yevgen Pogribnyi, Maïeul Rouquette, Elie RouX, Hugo Roy, Guy Rutenberg, Philipp Stephani, Keno WehR, Dominik WujastyK, Sertaç Ö. Yildiz, Maksim Zhouludev, Yan Zhou, and Stefan Zlatinov. Their respective contributions can be identified from the contributor statistics on GitHub.

Among the ones who sent contributions directly to us we would like to especially thank Claudio BeCCari, the indefatigable champion of Romance languages, and beyond! Furthermore, kudos go to Moritz Wemheuer (of biblatex) who has helped a lot to improve polyglossia interaction with biblatex and csquotes.

Not at least, we are very grateful for all bug reports and feature enhancement requests we received from the numerous users we cannot list all here (but again, you can find all names on GitHub). Please go on with that, you are keeping polyglossia running!