Polyglossia: Modern multilingual typesetting with X\LaTeX\ and \textit{Lua}\LaTeX\

\textsc{Fran\c{c}ois Charette} \hspace{1em} \textsc{Arthur Reutenauer}\footnote{Current maintainer}
\textsc{Bastien Roucairès} \hspace{1em} \textsc{Jürgen Spitzmüller}

2020/12/08 \hspace{1em} v1.51
(pdf file generated on 8 December 2020)

Contents

1 Introduction \hspace{1em} 1

2 Setting up multilingual documents \hspace{1em} 2
\hspace{1em} 2.1 Activating languages \hspace{1em} 2
\hspace{1em} 2.2 Supported languages \hspace{1em} 3
\hspace{1em} 2.3 Relation to and use of Babel language names \hspace{1em} 4
\hspace{1em} 2.4 Using IETF language tags \hspace{1em} 4
\hspace{1em} 2.5 Global options \hspace{1em} 10

3 Language-switching commands \hspace{1em} 10
\hspace{1em} 3.1 Recommended commands \hspace{1em} 11
\hspace{1em} 3.2 Babel commands \hspace{1em} 12
\hspace{1em} 3.3 Other commands \hspace{1em} 12
\hspace{1em} 3.4 Setting up alias commands \hspace{1em} 13

4 Font setup \hspace{1em} 13
7 Modifying or extending captions, date formats and language settings

8 Script-specific numbering
 8.1 General localization of numbering
 8.2 Non-Western decimal digits
 8.3 Non-Latin alphabetic numbering

9 Footnotes in right-to-left context
 9.1 Horizontal footnote position
 9.2 Footnote rule length and position

10 Calendars
 10.1 Hebrew calendar (hebrewcal.sty)
 10.2 Islamic calendar (hijrical.sty)
 10.3 Farsi (jalālī) calendar (farsical.sty)

11 Auxiliary commands

12 Accessing language information

13 Acknowledgements (by François Charette)

14 More acknowledgements (by the current development team)
1 Introduction

Polyglossia is a package for facilitating multilingual typesetting with X\LaTeX and \texttt{LuaLaTeX}. Basically, it can be used as an alternative to \texttt{babel} for performing the following tasks automatically:

1. Loading the appropriate hyphenation patterns.
2. Setting the script and language tags of the current font (if possible and available), via the package \texttt{fontspec}.
3. Switching to a font assigned by the user to a particular script or language.
4. Adjusting some typographical conventions according to the current language (such as afterindent, frenchindent, spaces before or after punctuation marks, etc.).
5. Redefining all document strings (like “chapter”, “figure”, “bibliography”).
6. Adapting the formatting of dates (for non-Gregorian calendars via external packages bundled with polyglossia: currently the Hebrew, Islamic and Farsi calendars are supported).
7. For languages that have their own numbering system, modifying the formatting of numbers appropriately (this also includes redefining the alphabetic sequence for non-Latin alphabets).\footnote{This is done by bundled sub-packages such as \texttt{arabicnumbers}.}
8. Ensuring proper directionality if the document contains languages that are written from right to left (via the package \texttt{bidi}, available separately).

Several features of \texttt{babel} that do not make sense in the X\LaTeX world (like font encodings, shorthands, etc.) are not supported. Generally speaking, polyglossia aims to remain as compatible as possible with the fundamental features of \texttt{babel} while being cleaner, light-weight, and modern. The package \texttt{antomega} has been very beneficial in our attempt to reach this objective.

Requirements The current version of polyglossia makes use of some convenient macros defined in the \texttt{etoolbox} package by Philipp Lehmann and Joseph Wright. Being designed for X\LaTeX and \texttt{LuaLaTeX}, it obviously also relies on \texttt{fontspec} by Will Robertson. For languages written from right to left, it needs the package \texttt{bidi} (for X\LaTeX) or \texttt{luabidi} (for \texttt{LuaLaTeX}) by Vafa Khalighi (وفا خليلي) and the \texttt{bidi-tex} GitHub Organisation. Polyglossia also bundles three packages for calendaric computations (\texttt{hebrewcal}, \texttt{hijrical}, and \texttt{farsical}).
2 Setting up multilingual documents

2.1 Activating languages

The default language of a document is specified by means of the command
\setdefaultlanguage%(options){lang}
(or, equivalently, \setmainlanguage). Secondary languages are specified with
\setotherlanguage%(options){lang}.
All these commands allow you to set language-specific options.\footnote{It is also possible to load a series of secondary languages at once (but without options) using \setotherlanguages{lang1,lang2,lang3,\ldots}.}
All language-specific options can be modified locally by means of the language-switching commands described in section 3.

Note In general, it is advisable to activate the languages after all packages have been loaded. This is particularly important if you use right-to-left scripts or languages with babel shorthands.

2.2 Supported languages

Table 1 lists all languages currently supported. Those in red have specific options and/or commands that are explained in section 6 below.

<table>
<thead>
<tr>
<th>Version</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1.0.1</td>
<td>The support for Amharic \text{←} should be considered an experimental attempt to port the package ethiop; feedback is welcome.</td>
</tr>
<tr>
<td>v1.1.1</td>
<td>v1.1.1 \text{←} added support for Asturian, Lithuanian, and Urdu. Version 1.2 \text{←} introduced Armenian, Occitan, Bengali, Lao, Malayalam, Marathi, Tamil, Telugu, and Turkmen.\footnote{Version 1.43 \text{←} brought basic support for Japanese (this is considered experimental, feedback is appreciated). In version 1.45 \text{←}, support for Kurdish and Mongolian as well as some new variants (Canadian French and English) have been added. Furthermore, for consistency reasons, some language have been renamed (farsi\text{→}persian, friulan\text{→}friulian, magyar\text{→}hungarian, portuges\text{→}portuguese, samin\text{→}sami) or merged (bahasai/bahasam\text{→}malay, brazil/portuges\text{→}portuguese, lsorbian/usorbian\text{→}sorbian, irish/scottish\text{→}gaelic, norsk/nynorsk\text{→}norwegian). The old names are still supported for backwards compatibility reasons. Version 1.46 \text{←} introduces support for Afrikaans, Belarusian, Bosnian and Georgian.}</td>
</tr>
<tr>
<td>v1.2.0</td>
<td></td>
</tr>
<tr>
<td>v1.43</td>
<td></td>
</tr>
<tr>
<td>v1.45</td>
<td></td>
</tr>
<tr>
<td>v1.46</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Languages currently supported in polyglossia

<table>
<thead>
<tr>
<th>Language</th>
<th>Language</th>
<th>Language</th>
<th>Language</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>afrikaans</td>
<td>danish</td>
<td>hungarian</td>
<td>marathi</td>
<td>slovenian</td>
</tr>
<tr>
<td>albanian</td>
<td>divehi</td>
<td>icelandic</td>
<td>mongolian</td>
<td>sorbian</td>
</tr>
<tr>
<td>amharic</td>
<td>dutch</td>
<td>interlingua</td>
<td>nko</td>
<td>spanish</td>
</tr>
<tr>
<td>arabic</td>
<td>english</td>
<td>italian</td>
<td>norwegian</td>
<td>swedish</td>
</tr>
<tr>
<td>armenian</td>
<td>esperanto</td>
<td>japanese</td>
<td>occitan</td>
<td>syriac</td>
</tr>
<tr>
<td>asturian</td>
<td>estonian</td>
<td>kannada</td>
<td>persian</td>
<td>tamil</td>
</tr>
<tr>
<td>basque</td>
<td>finnish</td>
<td>khmer</td>
<td>piedmontese</td>
<td>telugu</td>
</tr>
<tr>
<td>belarussian</td>
<td>french</td>
<td>korean</td>
<td>polish</td>
<td>thai</td>
</tr>
<tr>
<td>bengali</td>
<td>friulian</td>
<td>kurdish</td>
<td>portuguese</td>
<td>tibetan</td>
</tr>
<tr>
<td>bosnian</td>
<td>gaelic</td>
<td>lao</td>
<td>romanian</td>
<td>turkish</td>
</tr>
<tr>
<td>breton</td>
<td>galician</td>
<td>latin</td>
<td>romansh</td>
<td>turkmen</td>
</tr>
<tr>
<td>bulgarian</td>
<td>georgian</td>
<td>latvian</td>
<td>russian</td>
<td>ukrainian</td>
</tr>
<tr>
<td>catalan</td>
<td>german</td>
<td>lithuanian</td>
<td>sami</td>
<td>urdu</td>
</tr>
<tr>
<td>coptic</td>
<td>greek</td>
<td>macedonian</td>
<td>sanskrit</td>
<td>vietnamese</td>
</tr>
<tr>
<td>croatian</td>
<td>hebrew</td>
<td>malay</td>
<td>serbian</td>
<td>welsh</td>
</tr>
<tr>
<td>czech</td>
<td>hindi</td>
<td>malayalam</td>
<td>slovak</td>
<td></td>
</tr>
</tbody>
</table>

2.3 Relation to and use of Babel language names

If you are familiar with the babel package, you will note that polyglossia’s language naming slightly differs. Whereas babel has a unique name for each language variety (e.g., american and british), polyglossia differentiates language varieties via language options (e.g., english, variant=american).

Furthermore, babel sometimes uses abbreviated language names (e.g., bahasam for Bahasa Malayu) as well as endonyms, i.e., language names coming from the designated languages (such as bahasa, canadien or magyar). As opposed to this, polyglossia always uses spelled-out (lower-cased) English language names. Please refer to table 2 for the differing language names in both packages.

For convenience reasons, polyglossia also supports the use of babel names ← (for the few justified exceptions, please refer to the notes in table 2). The babel names listed in table 2 can be used instead of the corresponding polyglossia name/options in \setdefaultlanguage and \setotherlanguage as well as in the polyglossia and babel language switching commands/environments documented in section 3.1 and 3.2 (e.g., \textgerman{variant=austrian,spelling=old}). However, unless you have special reasons, we strongly encourage you to use the polyglossia names.
<table>
<thead>
<tr>
<th>Babel name</th>
<th>Polyglossia name</th>
<th>Polyglossia options</th>
</tr>
</thead>
<tbody>
<tr>
<td>acadien</td>
<td>french</td>
<td>variant=acadian</td>
</tr>
<tr>
<td>american</td>
<td>english</td>
<td>variant=american [default]</td>
</tr>
<tr>
<td>australian</td>
<td>english</td>
<td>variant=australian</td>
</tr>
<tr>
<td>austrian</td>
<td>german</td>
<td>variant=austrian, spelling=old</td>
</tr>
<tr>
<td>bahasa</td>
<td>malay</td>
<td>variant=indonesian [default]</td>
</tr>
<tr>
<td>bahasam</td>
<td>malay</td>
<td>variant=malaysian</td>
</tr>
<tr>
<td>brazil</td>
<td>portuguese</td>
<td>variant=brazilian</td>
</tr>
<tr>
<td>british</td>
<td>english</td>
<td>variant=british</td>
</tr>
<tr>
<td>canadian</td>
<td>english</td>
<td>variant=canadian</td>
</tr>
<tr>
<td>canadien</td>
<td>french</td>
<td>variant=canadian</td>
</tr>
<tr>
<td>classiclatin(^a)</td>
<td>latin</td>
<td>variant=classic</td>
</tr>
<tr>
<td>farsi</td>
<td>persian</td>
<td></td>
</tr>
<tr>
<td>ecclesiasticlatin(^b)</td>
<td>latin</td>
<td>variant=ecclesiastic</td>
</tr>
<tr>
<td>friulan</td>
<td>friulan</td>
<td></td>
</tr>
<tr>
<td>german(^c)</td>
<td>german</td>
<td>spelling=old</td>
</tr>
<tr>
<td>irish</td>
<td>gaelic</td>
<td>variant=irish [default]</td>
</tr>
<tr>
<td>kurmanji</td>
<td>kurish</td>
<td>variant=kurmanji</td>
</tr>
<tr>
<td>lowersorbian</td>
<td>sorbian</td>
<td>variant=lower</td>
</tr>
<tr>
<td>magyar</td>
<td>hungarian</td>
<td></td>
</tr>
<tr>
<td>medievallatin(^d)</td>
<td>latin</td>
<td>variant=medieval</td>
</tr>
<tr>
<td>naustrian</td>
<td>german</td>
<td>variant=austrian</td>
</tr>
<tr>
<td>newzealand</td>
<td>english</td>
<td>variant=newzealand</td>
</tr>
<tr>
<td>ngerman</td>
<td>german</td>
<td>variant=german [default]</td>
</tr>
<tr>
<td>norsk</td>
<td>norwegian</td>
<td>variant=bokmal</td>
</tr>
<tr>
<td>nswissgerman</td>
<td>german</td>
<td>variant=swiss</td>
</tr>
<tr>
<td>nynorsk</td>
<td>norwegian</td>
<td>variant=nynorsk [default]</td>
</tr>
<tr>
<td>polutonikogreek</td>
<td>greek</td>
<td>variant=polytonic</td>
</tr>
<tr>
<td>portuges</td>
<td>portuguese</td>
<td>variant=portuguese [default]</td>
</tr>
<tr>
<td>samin</td>
<td>sami</td>
<td></td>
</tr>
<tr>
<td>scottish</td>
<td>gaelic</td>
<td>variant=scottish</td>
</tr>
<tr>
<td>serbian</td>
<td>serbian</td>
<td>script=Cyrillic</td>
</tr>
<tr>
<td>slovene</td>
<td>slovenian</td>
<td></td>
</tr>
<tr>
<td>spanishmx</td>
<td>spanish</td>
<td>variant=mexican</td>
</tr>
<tr>
<td>swissgerman</td>
<td>german</td>
<td>variant=swiss, spelling=old</td>
</tr>
<tr>
<td>uppersorbian</td>
<td>sorbian</td>
<td>variant=upper [default]</td>
</tr>
</tbody>
</table>

\(^a\)In babel currently only selectable via dot modifier (latin.classic).
\(^b\)In babel currently only selectable via dot modifier (latin.ecclesiastic).
\(^c\)Due to the name conflict only available in polyglossia as german\(^b\) (which is a babel synonym).
\(^d\)In babel currently only selectable via dot modifier (latin.medieval).
2.4 Using IETF language tags

Polyglossia ← also supports the use of language tags that conform to the IETF BCP-47 Best Current Practice.\(^4\) Thus, you can use tags such as `en-GB` (for British English) or `de-AT-1901` (for Austrian German, old spelling) in `\setdefaultlanguage` and `\setotherlanguage` as well as in the language switching command `\textlang{⟨tag⟩}`, the environment `\begin{lang}{⟨tag⟩} ... \end{lang}` and the `babel` language switching commands/environments documented in section 3.2. Table 3 lists the currently supported tags.

Table 3. BCP47-polyglossia language name matching

<table>
<thead>
<tr>
<th>BCP-47 tag</th>
<th>Polyglossia name</th>
<th>Polyglossia options</th>
</tr>
</thead>
<tbody>
<tr>
<td>aeb</td>
<td>arabic</td>
<td>locale=tunisia</td>
</tr>
<tr>
<td>af</td>
<td>afrikaans</td>
<td></td>
</tr>
<tr>
<td>afb</td>
<td>arabic</td>
<td>locale=default</td>
</tr>
<tr>
<td>am</td>
<td>amharic</td>
<td></td>
</tr>
<tr>
<td>apd</td>
<td>arabic</td>
<td>locale=default</td>
</tr>
<tr>
<td>ar</td>
<td>arabic</td>
<td></td>
</tr>
<tr>
<td>ar-IQ</td>
<td>arabic</td>
<td>locale=mashriq</td>
</tr>
<tr>
<td>ar-JO</td>
<td>arabic</td>
<td>locale=mashriq</td>
</tr>
<tr>
<td>ar-LB</td>
<td>arabic</td>
<td>locale=mashriq</td>
</tr>
<tr>
<td>ar-MR</td>
<td>arabic</td>
<td>locale=mauritania</td>
</tr>
<tr>
<td>ar-PS</td>
<td>arabic</td>
<td>locale=mashriq</td>
</tr>
<tr>
<td>ar-SY</td>
<td>arabic</td>
<td>locale=mashriq</td>
</tr>
<tr>
<td>ar-YE</td>
<td>arabic</td>
<td>locale=default</td>
</tr>
<tr>
<td>arq</td>
<td>arabic</td>
<td>locale=algeria</td>
</tr>
<tr>
<td>ary</td>
<td>arabic</td>
<td>locale=morocco</td>
</tr>
<tr>
<td>arz</td>
<td>arabic</td>
<td>locale=default</td>
</tr>
<tr>
<td>ast</td>
<td>asturian</td>
<td></td>
</tr>
<tr>
<td>ayl</td>
<td>arabic</td>
<td>locale=libya</td>
</tr>
<tr>
<td>be</td>
<td>belarusan</td>
<td></td>
</tr>
<tr>
<td>be-tarask</td>
<td>belarusan</td>
<td>spelling=classic</td>
</tr>
<tr>
<td>bg</td>
<td>bulgarian</td>
<td></td>
</tr>
<tr>
<td>bn</td>
<td>bengali</td>
<td></td>
</tr>
<tr>
<td>bo</td>
<td>tibetan</td>
<td></td>
</tr>
<tr>
<td>br</td>
<td>breton</td>
<td></td>
</tr>
<tr>
<td>bs</td>
<td>bosnian</td>
<td></td>
</tr>
<tr>
<td>ca</td>
<td>catalan</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. BCP47-polyglossia language name matching (continued)

<table>
<thead>
<tr>
<th>BCP-47 tag</th>
<th>Polyglossia name</th>
<th>Polyglossia options</th>
</tr>
</thead>
<tbody>
<tr>
<td>ckb</td>
<td>kurdish</td>
<td>variant=sorani [default]</td>
</tr>
<tr>
<td>ckb-Arab</td>
<td>kurdish</td>
<td>variant=sorani, script=Arabic [default]</td>
</tr>
<tr>
<td>ckb-Latn</td>
<td>kurdish</td>
<td>variant=sorani, script=Latin</td>
</tr>
<tr>
<td>cop</td>
<td>coptic</td>
<td></td>
</tr>
<tr>
<td>cy</td>
<td>welsh</td>
<td></td>
</tr>
<tr>
<td>cz</td>
<td>czech</td>
<td></td>
</tr>
<tr>
<td>da</td>
<td>danish</td>
<td></td>
</tr>
<tr>
<td>de</td>
<td>german</td>
<td></td>
</tr>
<tr>
<td>de-AT</td>
<td>german</td>
<td>variant=austrian, spelling=new</td>
</tr>
<tr>
<td>de-AT-1901</td>
<td>german</td>
<td>variant=austrian, spelling=old</td>
</tr>
<tr>
<td>de-AT-1996</td>
<td>german</td>
<td>variant=austrian, spelling=new</td>
</tr>
<tr>
<td>de-CH</td>
<td>german</td>
<td>variant=swiss, spelling=new</td>
</tr>
<tr>
<td>de-CH-1901</td>
<td>german</td>
<td>variant=swiss, spelling=old</td>
</tr>
<tr>
<td>de-CH-1996</td>
<td>german</td>
<td>variant=swiss, spelling=new</td>
</tr>
<tr>
<td>de-DE</td>
<td>german</td>
<td>variant=german, spelling=new</td>
</tr>
<tr>
<td>de-DE-1901</td>
<td>german</td>
<td>variant=german, spelling=old</td>
</tr>
<tr>
<td>de-DE-1996</td>
<td>german</td>
<td>variant=german, spelling=new [default]</td>
</tr>
<tr>
<td>de-Latf</td>
<td>german</td>
<td>script=blackletter</td>
</tr>
<tr>
<td>de-Latf-AT</td>
<td>german</td>
<td>variant=austrian, spelling=new, script=blackletter</td>
</tr>
<tr>
<td>de-Latf-AT-1901</td>
<td>german</td>
<td>variant=austrian, spelling=old, script=blackletter</td>
</tr>
<tr>
<td>de-Latf-AT-1996</td>
<td>german</td>
<td>variant=austrian, spelling=new, script=blackletter</td>
</tr>
<tr>
<td>de-Latf-CH</td>
<td>german</td>
<td>variant=swiss, spelling=new, script=blackletter</td>
</tr>
<tr>
<td>de-Latf-CH-1901</td>
<td>german</td>
<td>variant=swiss, spelling=old, script=blackletter</td>
</tr>
<tr>
<td>de-Latf-CH-1996</td>
<td>german</td>
<td>variant=swiss, spelling=new, script=blackletter</td>
</tr>
<tr>
<td>de-Latf-DE</td>
<td>german</td>
<td>variant=german, spelling=new, script=blackletter</td>
</tr>
<tr>
<td>de-Latf-DE-1901</td>
<td>german</td>
<td>variant=german, spelling=old, script=blackletter</td>
</tr>
<tr>
<td>de-Latf-DE-1996</td>
<td>german</td>
<td>variant=german, spelling=new, script=blackletter</td>
</tr>
<tr>
<td>dsb</td>
<td>sorbian</td>
<td>variant=lower</td>
</tr>
<tr>
<td>dv</td>
<td>divehi</td>
<td></td>
</tr>
<tr>
<td>el</td>
<td>greek</td>
<td>variant=monotonic [default]</td>
</tr>
<tr>
<td>el-polyton</td>
<td>greek</td>
<td>variant=polyton</td>
</tr>
<tr>
<td>en</td>
<td>english</td>
<td>variant=australian</td>
</tr>
<tr>
<td>en-AU</td>
<td>english</td>
<td>variant=canadian</td>
</tr>
<tr>
<td>en-CA</td>
<td>english</td>
<td>variant=british</td>
</tr>
<tr>
<td>en-GB</td>
<td>english</td>
<td>variant=newzealand</td>
</tr>
<tr>
<td>en-NZ</td>
<td>english</td>
<td>variant=us [default]</td>
</tr>
<tr>
<td>en-US</td>
<td>english</td>
<td>variant=us [default]</td>
</tr>
<tr>
<td>eo</td>
<td>esperanto</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. BCP47-polyglossia language name matching (continued)

<table>
<thead>
<tr>
<th>BCP-47 tag</th>
<th>Polyglossia name</th>
<th>Polyglossia options</th>
</tr>
</thead>
<tbody>
<tr>
<td>es</td>
<td>spanish</td>
<td></td>
</tr>
<tr>
<td>es-ES</td>
<td>spanish</td>
<td>variant=spanish</td>
</tr>
<tr>
<td>es-MX</td>
<td>spanish</td>
<td>variant=mexican</td>
</tr>
<tr>
<td>et</td>
<td>estonian</td>
<td></td>
</tr>
<tr>
<td>eu</td>
<td>basque</td>
<td></td>
</tr>
<tr>
<td>fa</td>
<td>persian</td>
<td></td>
</tr>
<tr>
<td>fi</td>
<td>finnish</td>
<td></td>
</tr>
<tr>
<td>fr</td>
<td>french</td>
<td></td>
</tr>
<tr>
<td>fr-CA</td>
<td>french</td>
<td>variant=canadian</td>
</tr>
<tr>
<td>fr-CH</td>
<td>french</td>
<td>variant=swiss</td>
</tr>
<tr>
<td>fr-FR</td>
<td>french</td>
<td>variant=french [default]</td>
</tr>
<tr>
<td>fur</td>
<td>friulian</td>
<td></td>
</tr>
<tr>
<td>ga</td>
<td>gaelic variant=irish [default]</td>
<td></td>
</tr>
<tr>
<td>gd</td>
<td>gaelic variant=scottish</td>
<td></td>
</tr>
<tr>
<td>gl</td>
<td>galician</td>
<td></td>
</tr>
<tr>
<td>grc</td>
<td>greek</td>
<td>variant=ancient</td>
</tr>
<tr>
<td>he</td>
<td>hebrew</td>
<td></td>
</tr>
<tr>
<td>hi</td>
<td>hindi</td>
<td></td>
</tr>
<tr>
<td>hr</td>
<td>croatian</td>
<td></td>
</tr>
<tr>
<td>hsb</td>
<td>sorbian</td>
<td>variant=upper [default]</td>
</tr>
<tr>
<td>hu</td>
<td>hungarian</td>
<td></td>
</tr>
<tr>
<td>hy</td>
<td>armenian</td>
<td></td>
</tr>
<tr>
<td>ia</td>
<td>interlingua</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>malay variant=indonesian</td>
<td></td>
</tr>
<tr>
<td>is</td>
<td>icelandic</td>
<td></td>
</tr>
<tr>
<td>it</td>
<td>italian</td>
<td></td>
</tr>
<tr>
<td>ja</td>
<td>japanese</td>
<td></td>
</tr>
<tr>
<td>ka</td>
<td>georgian</td>
<td></td>
</tr>
<tr>
<td>km</td>
<td>khmer</td>
<td></td>
</tr>
<tr>
<td>kmr</td>
<td>kurdish</td>
<td>variant=kurmanji</td>
</tr>
<tr>
<td>kmr-Arab</td>
<td>kurdish</td>
<td>variant=kurmanji, script=Arabic</td>
</tr>
<tr>
<td>kmr-Latn</td>
<td>kurdish</td>
<td>variant=kurmanji, script=Latin</td>
</tr>
<tr>
<td>kn</td>
<td>kannada</td>
<td></td>
</tr>
<tr>
<td>ko</td>
<td>korean</td>
<td></td>
</tr>
<tr>
<td>ku</td>
<td>kurdish</td>
<td></td>
</tr>
<tr>
<td>ku-Arab</td>
<td>kurdish</td>
<td>script=Arabic</td>
</tr>
<tr>
<td>ku-Latn</td>
<td>kurdish</td>
<td>script=Latin</td>
</tr>
<tr>
<td>la</td>
<td>latin</td>
<td></td>
</tr>
<tr>
<td>la-x-classic</td>
<td>latin</td>
<td>variant=classic</td>
</tr>
</tbody>
</table>
Table 3. BCP47-polyglossia language name matching (continued)

<table>
<thead>
<tr>
<th>BCP-47 tag</th>
<th>Polyglossia name</th>
<th>Polyglossia options</th>
</tr>
</thead>
<tbody>
<tr>
<td>la-x-ecclesia</td>
<td>latin</td>
<td>variant=ecclesiastic</td>
</tr>
<tr>
<td>la-x-medieval</td>
<td>latin</td>
<td>variant=medieval</td>
</tr>
<tr>
<td>lo</td>
<td>lao</td>
<td></td>
</tr>
<tr>
<td>lt</td>
<td>lithuanian</td>
<td></td>
</tr>
<tr>
<td>lv</td>
<td>latvian</td>
<td></td>
</tr>
<tr>
<td>mk</td>
<td>macedonian</td>
<td></td>
</tr>
<tr>
<td>ml</td>
<td>malayalam</td>
<td></td>
</tr>
<tr>
<td>mn</td>
<td>mongolian</td>
<td></td>
</tr>
<tr>
<td>mr</td>
<td>marathi</td>
<td></td>
</tr>
<tr>
<td>nb</td>
<td>norwegian</td>
<td>variant=bokmal</td>
</tr>
<tr>
<td>nko</td>
<td>nko</td>
<td></td>
</tr>
<tr>
<td>nl</td>
<td>dutch</td>
<td></td>
</tr>
<tr>
<td>nn</td>
<td>norwegian</td>
<td>variant=nynorsk [default]</td>
</tr>
<tr>
<td>oc</td>
<td>occitan</td>
<td></td>
</tr>
<tr>
<td>pl</td>
<td>polish</td>
<td></td>
</tr>
<tr>
<td>pms</td>
<td>piedmontese</td>
<td></td>
</tr>
<tr>
<td>pt</td>
<td>portuguese</td>
<td></td>
</tr>
<tr>
<td>pt-BR</td>
<td>portuguese</td>
<td>variant=brazilian</td>
</tr>
<tr>
<td>pt-PT</td>
<td>portuguese</td>
<td>variant=portuguese [default]</td>
</tr>
<tr>
<td>rm</td>
<td>romansh</td>
<td></td>
</tr>
<tr>
<td>ro</td>
<td>romanian</td>
<td></td>
</tr>
<tr>
<td>ru</td>
<td>russian</td>
<td></td>
</tr>
<tr>
<td>ru-luna1918</td>
<td>russian</td>
<td>spelling=modern [default]</td>
</tr>
<tr>
<td>ru-petr1708</td>
<td>russian</td>
<td>spelling=old</td>
</tr>
<tr>
<td>sa</td>
<td>sanskrit</td>
<td></td>
</tr>
<tr>
<td>sa-Beng</td>
<td>sanskrit</td>
<td>script=Bengali</td>
</tr>
<tr>
<td>sa-Deva</td>
<td>sanskrit</td>
<td>script=Devanagari [default]</td>
</tr>
<tr>
<td>sa-Gujr</td>
<td>sanskrit</td>
<td>script=Gujarati</td>
</tr>
<tr>
<td>sa-Knda</td>
<td>sanskrit</td>
<td>script=Kannada</td>
</tr>
<tr>
<td>sa-Mlym</td>
<td>sanskrit</td>
<td>script=Malayalam</td>
</tr>
<tr>
<td>sa-Telu</td>
<td>sanskrit</td>
<td>script=Telugu</td>
</tr>
<tr>
<td>se</td>
<td>sami</td>
<td></td>
</tr>
<tr>
<td>sk</td>
<td>slovak</td>
<td></td>
</tr>
<tr>
<td>sl</td>
<td>slovenian</td>
<td></td>
</tr>
<tr>
<td>sq</td>
<td>albanian</td>
<td></td>
</tr>
<tr>
<td>sr</td>
<td>serbian</td>
<td></td>
</tr>
<tr>
<td>sr-Cyrl</td>
<td>serbian</td>
<td>script=Cyrillic</td>
</tr>
<tr>
<td>sr-Latn</td>
<td>serbian</td>
<td>script=Latin [default]</td>
</tr>
<tr>
<td>sv</td>
<td>swedish</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. BCP47-polyglossia language name matching (continued)

<table>
<thead>
<tr>
<th>BCP-47 tag</th>
<th>Polyglossia name</th>
<th>Polyglossia options</th>
</tr>
</thead>
<tbody>
<tr>
<td>syr</td>
<td>syriac</td>
<td></td>
</tr>
<tr>
<td>ta</td>
<td>tamil</td>
<td></td>
</tr>
<tr>
<td>te</td>
<td>telugu</td>
<td></td>
</tr>
<tr>
<td>th</td>
<td>thai</td>
<td></td>
</tr>
<tr>
<td>tk</td>
<td>turkmen</td>
<td></td>
</tr>
<tr>
<td>tr</td>
<td>turkish</td>
<td></td>
</tr>
<tr>
<td>uk</td>
<td>ukrainian</td>
<td></td>
</tr>
<tr>
<td>ur</td>
<td>urdu</td>
<td></td>
</tr>
<tr>
<td>vi</td>
<td>vietnamese</td>
<td></td>
</tr>
<tr>
<td>zsm</td>
<td>malay variant=malaysian [default]</td>
<td></td>
</tr>
</tbody>
</table>

2.5 Global options

Polyglossia can be loaded with the following global package options:

- **babelshorthands** ← = *true or false
 Globally activates babel shorthands whenever available. Currently short-hands are implemented for Afrikaans, Belarusian, Catalan, Croatian, Czech, Dutch, Finnish, Georgian, German, Italian, Latin, Mongolian, Russian, Slovak, and Ukrainian. Please refer to the respective language descriptions (sec. 6) for details.

- **localmarks** = *true or false
 redefines the internal \ markboth and \ markright to the effect that the header text is explicitly set in the currently active language (i.e., wrapped into \ foreign\ language{\lang}{{…}}).

 In earlier versions of polyglossia, ← this option was enabled by default, but we now realize that it causes more problems than it helps (since it breaks if a package or class redefines \markboth or \markright), so it is now disabled by default. For backwards compatibility, the option **nolocalmarks** which used to switch off the previous default, and now equals the default, is still available.

- **luatexrenderer** ← (= renderer) (default value: Harfbuzz)
 determines which font renderer is used with Lua\TeX\ output. The correct font renderer is essential particularly for non-Latin scripts. By default, polyglossia uses the Harfbuzz renderer that has been introduced to Lua\TeX\ in 2019 (\TeX\ Live 2020), as this gives the best results generally. If you want
to use a different renderer, you can specify this here (or individually for specific fonts via the optional argument of the font selection commands). Please refer to the fontspec manual for supported values and for details on how to change the renderer for individual fonts.

- luatexrenderer=none disables polyglossia’s automatic renderer setting.
- verbose = *true or false

determines whether info messages and (some of the) warnings issued by \TeX, fontspec and polyglossia are output.

3 Language-switching commands

3.1 Recommended commands

\text⟨lang⟩ \textlang

\text⟨lang⟩ \textlang

For each activated language the command \text⟨lang⟩\{(options)\}\{(…)} (as well as the synonymous \textlang\{(options)\}\{(lang)\}\{(…)} \rightarrow) becomes available for short insertions of text in that language.

For example \textruussian\{\today\} and \textlang{ruussian}{\today} yield 8 декабря 2020 г. The commands switch to the correct hyphenation patterns, they activate some extra features for the selected language (such as extra spacing before punctuation in French), and they translate the date when using \today.

They do not, however, translate so-called caption strings, i.e., “chapter”, “figure” etc., to the local language (these remain in the currently active ‘outer’ language).

The environment ⟨lang⟩, which is also available for any activated language (as well as the equivalent \begin{lang}\{(options)\}\{(lang)\} \ldots \end{lang} \rightarrow), is meant for longer passages of text. It behaves slightly different than the \text⟨lang⟩ and \textlang commands: It does everything the latter do, but additionally, the caption strings are translated as well, and the language is also passed to auxiliary files, the table of contents and the lists of figures/tables. Like the commands, the environment provides the possibility of setting language options locally. For instance the following allows us to quote the beginning of Homer’s Iliad:

\begin{quote}
\begin{greek}\{variant=ancient\}
μῆνιν άειδε θεὰ Πηληϊάδεω Αχιλῆος οὐλομένην, ἢ μυρὶ’ ἀχαιόις
ἀλγε’ ἔθηκε, παλλάς δ’ ίφθίμους ψυχὰς Άϊδι προϊάψεν ἢρων,
αὐτοὺς δὲ ἐλώρια τεύχε κύνεσιν σίωνοιαὶ τε πᾶσι, Διὸς δ’
ἐτελείετο βουλή, ἓς οὗ δὴ τὰ πρῶτα διαστήτην ἐρίσαντε Ατρείδης
\end{greek}
\end{quote}

τε ἀναξ ἀνδρῶν καὶ δῖος Αχιλλεύς.

\end{quote}

μῆνιν ἄειδε θεὰ Πηληϊάδεω Ἀχιλῆος οὐλομένην, ἢ μυρί’ Ἀχαιοῖς ἄλγε’ ἔθηκε, πολλὰς δ’ ἵρθημοις ψυχὰς Ἀιδί προϊαψεν ἠρώων, οὕτως δὲ ἐλώρια τεῦχε κύνεσιν οἰωνοὶ τε πᾶσι, Διὸς δ’ ἐτελείετο βούλη, ἕξ ὦ δὴ τὰ πρῶτα διαστήμην ἐρίσαντε Ατρείδης τε ἀναξ ἀνδρῶν καὶ δῖος Αχιλλεύς.

Arabic Note that for Arabic one cannot use the environment arabic, as \arabic is defined internally by \LaTeX. In this case we need to use the environment \texttt{Arabic} instead.

3.2 Babel commands

Some macros defined in babel's \texttt{hyphen.cfg} (and thus usually compiled into the \LaTeX and Lua\LaTeX format) are redefined, but keep a similar behaviour.

\begin{verbatim}
\selectlanguage{⟨lang⟩}
\end{verbatim}

\begin{verbatim}
\foreignlanguage{⟨lang⟩}{⟨…⟩}
\end{verbatim}

\begin{verbatim}
\begin{otherlanguage}{⟨lang⟩}{⟨…⟩}
\end{verbatim}

\begin{verbatim}
\begin{otherlanguage*}{⟨lang⟩}{⟨…⟩}
\end{verbatim}

\begin{verbatim}
\begin{hyphenrules}{⟨lang⟩}{⟨…⟩}
\end{verbatim}

\texttt{v1.50}

The \texttt{hyphenrules} environment only switches the hyphenation patterns to the one associated with the language \texttt{(lang)} (or the language variety as specified via \texttt{(options)}). It does no further language-specific change.

Since the \LaTeX and Lua\LaTeX format incorporate babel's \texttt{hyphen.cfg}, the low-level commands for hyphenation and language switching defined there are in principal also accessible. Note, however, that the availability of such low-level commands is not guaranteed, as \texttt{hyphen.cfg}, which is out of polyglossia's control, is (or at least has been) subject to regular change.

14
3.3 Other commands

The following commands are probably of lesser interest to the end user, but ought to be mentioned here.

- \selectbackgroundlanguage{(lang)}: this selects the global font setup and the numbering definitions for the default language.
- \resetdefaultlanguage{(options)}{(lang)} (experimental): completely switches the default language to another one in the middle of a document: *this may have adverse effects!*
- \normalfontlatin: in an environment where \normalfont has been re-defined to a non-latin script, this will reset to the font defined with \setmainfont etc. In a similar vein, it is possible to use \rmfamilylatin, \sffamilylatin, and \ttfamilylatin.
- \latinalph: Representation of counter as a lower-case letter: 1 = a, 2 = b, etc.
- \latinAlph: Representation of counter as an upper-case letter: 1 = A, 2 = B, etc.

3.4 Setting up alias commands

By means of the macro

\setlanguagealias{(options)}{(language)}{(alias)} ← \setlanguagealias{variant=austrian}{german}{AT}

you can define alias commands for specific language (variants). E.g.,

\setlanguagealias{variant=austrian}{german}{AT}

will define a command \textAT as well as an environment \{AT\} which will link towards the command \textgerman{variant=austrian} and the environment \{german\}{variant=austrian}, respectively. The aliases can also be used in the language switching commands described in section 3.1 and 3.2. Note, though, that the usual restrictions for command names apply, so something such as de-AT or de_AT will not work since - and _ are not allowed in command names (the same holds true for any non-ASCII character and for digits).

For the latter case, and for the case where an alias would clash with an existing command (e.g., \textit) or a \text command (e.g., \texttt), a starred version

\setlanguagealias*{(options)}{(language)}{(alias)} ← \setlanguagealias*{variant=austrian}{german}{AT}

is provided which does neither define a \text{alias} command nor an \{alias\} environment, but which will set up the alias for everything else, including \textlang{\{alias\}} and \begin{lang}{\{alias\}}.
Polyglossia comes with some aliases predefined, namely aliases for babel language names (see sec. 2.3) and for IETF BCP-47 language tags (the latter via \setlanguagealias*; see sec. 2.4).

4 Font setup

With polyglossia it is possible to associate a specific font with any script or language that occurs in the document. That font should always be defined as \(\langle\text{script}\rangle\)font or \(\langle\text{language}\rangle\)font. For instance, if the default font defined by \setmainfont does not support Greek, then one can define the font used to display Greek with:

\[
\texttt{\newfontfamily\greekfont[Script=Greek,\ldots]{\langle\text{font}\rangle}}.
\]

Note that polyglossia will use the font defined as is, so assure to do all necessary settings (please refer to the fontspec documentation for details). For instance, if \arabicfont is explicitly defined, then the option \texttt{Script=Arabic} should be included in that definition.

If a specific sans serif or monospace ('teletype') font is needed for a particular script or language, it can be defined by means of \(\langle\text{script}\rangle\)fonts or \(\langle\text{language}\rangle\)fonts and \(\langle\text{script}\rangle\)fonttt or \(\langle\text{language}\rangle\)fonttt, respectively.

Whenever a new language is activated, polyglossia will first check whether a font has been defined for that language or – for languages in non-Latin scripts – for the script it uses. If it is not defined, it will use the currently active font and – in the case of OpenType fonts – will attempt to turn on the appropriate OpenType tags for the script and language used, in case these are available in the font, by means of fontspec’s \texttt{\addfontfeature}. If the current font does not appear to support the script of that language, an error message is displayed.

5 Adapting hyphenation

5.1 Hyphenation exceptions

\TeX provides the command \texttt{\hyphenation{⟨exceptions⟩}} to globally define hyphenation exceptions which override the hyphenation patterns for specified words. The command takes as argument a space-separated list of words where hyphenation points are marked by a dash (if no dash is used, the respective word is not hyphenated at all):
These exceptions, however, apply to all languages. In addition to this, \texttt{polyglossia} provides the command
\begin{verbatim}
\pghyphenation[⟨options⟩]{⟨lang⟩}{⟨exceptions⟩}
\end{verbatim}
which can be used to define exceptions that only apply to a specific language or language variant, respectively.

5.2 Hyphenation thresholds

\textit{Polyglossia} sets reasonable defaults for the hyphenation thresholds of each language, \textit{i.e.}, the number of characters that must at least be there at the beginning or end of a word before it is hyphenated (\texttt{\lefthyphenmin} and \texttt{\righthyphenmin} in \TeX). For instance, with English, this threshold is 2 at the beginning (‘left’) and 3 at the end (‘right’), so a word will not be hyphenated within the first two characters at the beginning and the last three characters at the end.

To change this value, \textit{polyglossia} provides the command
\begin{verbatim}
\setlanghyphenmins[⟨options⟩]{⟨lang⟩}{⟨l⟩}{⟨r⟩}
\end{verbatim}
where \texttt{⟨lang⟩} is to be replaced with the respective language name or alias, \texttt{⟨options⟩} can be used to delimit the modification to a particular variety (\textit{e.g.}, via \texttt{variant} or \texttt{spelling}), \texttt{⟨l⟩} with the left threshold value (\textit{e.g.}, 3), and \texttt{⟨r⟩} with the right threshold value (\textit{e.g.}, \texttt{\setlanghyphenmins[spelling=old]{german}{4}{4}}). This setting can be changed repeatedly in the preamble and the document body. It applies to all subsequent text in the respective language (variety), but only after the next language switch.

5.3 Hyphenation disabling

In some very specific contexts (such as music score creation), \TeX hyphenation is avoided as it may cause troubles. \textit{Polyglossia} provides two functions: \texttt{\disablehyphenation} and \texttt{\enablehyphenation}. Note that if you select a new language while hyphenation is disabled, it will remain disabled. If you re-enable it, the hyphenation patterns of the currently selected language will be activated.
6 Language-specific options and commands

This section gives a list of all languages for which options and end-user commands are defined. Note the following conventions:

- The preset value of each option (i.e., the setting that applies by default, if the option is not explicitly set) is given in italics.
- If an option key may be used without a value, the value that applies for value-less keys is marked by a preceding asterisk.

For instance, babelshorthands = *true or false means that babelshorthands is false by default in the respective language, and that passing babelshorthands (without value) is equivalent to passing babelshorthands=true.

6.1 afrikaans

Options:

- **babelshorthands** ← = *true or false

 If this is turned on, the following shorthands defined for fine-tuning hyphenation and micro-typography of Afrikaans words are activated:

 "- adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \- in default \TeX).

 "~ for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.

 "| disables a ligature at this position.

 " " allows for a line break at this position (without hyphenation sign).

 "/ a slash that allows for a subsequent line break. As opposed to \slash, hyphenation at the breakpoints preset in the hyphenation patterns is still allowed.

6.2 arabic

Options:

- **calendar** = gregorian or islamic (= hijri)
- **locale** = default\(^{5}\), mashriq\(^{6}\), libya, algeria, tunisia, morocco, mauritania

\(^{5}\)For Egypt, Sudan, Yemen and the Gulf states.
\(^{6}\)For Iraq, Syria, Jordan, Lebanon and Palestine.
This setting influences the spelling of the month names for the Gregorian calendar, as well as the form of the numerals (unless overridden by the following option).

- **numerals** = mashriq or maghrib
 The latter is the default when locale=algeria, tunisia, or morocco.

- **abjadalph** ← = *true or false
 Set this to true if you want the alphabetic counters to be output using \abjadalph rather than \abjad. Note that this limits the counter scope to 28 (see \abjadalph below).

- **abjadimnotail** ← = *true or false
 Set this to true if you want the abjad form of the number three to be ج – as in the manuscript tradition – instead of the modern usage ج.

Commands:

- \abjad
 \abjad outputs Arabic abjad numbers according to the Mashriq varieties. Example: \abjad{1863} yields غضسج.

- \abjadmaghribi
 \abjadmaghribi outputs Arabic abjad numbers according to the Maghrib varieties. Example: \abjadmaghribi{1863} yields مطسح.

- \abjadalph
 \abjadalph ← steps through the Arabic alphabet, thus it can only be used up to 28. Example: \textarabic{\abjadalph{18}} yields ص. v1.50

- \aemph
 \aemph to emphasize text with \overline. \aemph{اب} yields اب. This command is also available for Farsi, Urdu, etc. v1.2.0

6.3 **armenian**

Options:

- **variant** ← = eastern or western

- **numerals** ← = armenian or arabic

6.4 **belarusian** ←

Options:

- **babelshorthands** = *true or false
 If this is turned on, the following shorthands are activated:

 - " adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to ".

 - "= adds an explicit hyphen with a breakpoint, allowing for hyphenation at the other points preset in the hyphenation patterns (as opposed to
for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.

"| disables a ligature at this position.

" " allows for a line break at this position (without hyphenation sign).

"\ thinspace for initials with a breakpoint in following surname.

"" for German left double quotes (looks like „).

"" for German right double quotes (looks like “).

"< for French left double quotes (looks like «).

"> for French right double quotes (looks like »).

There are also three shorthands for the Cyrillic dash (тире), which is shorter than the emdash but longer than the endash (namely 0.8 em). Note that, since it is not covered by unicode, this character is faked by telescoping two endashes:

"--- Cyrillic dash for the use in normal text. This requires preceding space in input (trailing space is optional) and prints with a non-breakable thin space before and after the dash.

"--- Cyrillic dash for the use in compound names (surnames). As opposed to "--- this removes any space before and after the dash.

"--- Cyrillic dash for denoting direct speech. This adds a larger space after the dash. Space before the dash is output as is.

- **numerals = arabic, cyrillic-alph or cyrillic-trad**

 Uses either Arabic numerals or Cyrillic alphanumerical numbering. The two Cyrillic variants differ as follows:
 - **cyrillic-alph** steps through the Cyrillic alphabet. Thus it can only be used up to 30.
 - **cyrillic-trad (= cyrillic)** uses a traditional Cyrillic alphanumerical system. It supports numbers up to 999 999.

- **spelling = modern or classic (= tarask)**

 With spelling=classic, captions and dates adhere to the Taraškievica (or Belarusian classical) orthography rather than the standard orthography.
Commands:
\Asbuk
 • \Asbuk: produces uppercased Cyrillic alphanumerals, for environments such as enumerate. It steps through the Cyrillic alphabet and thus it can only be used up to 30. The command takes a counter as argument, \text{e.g.}, \text{\textbelarusian{\Asbuk{page}}} produces Ф.
\asbuk
 • \asbuk: same as \Asbuk but in lowercase.
\AsbukTrad
 • \AsbukTrad: same as \Asbuk but using the traditional Cyrillic alphanumeric numbering which supports numbers up to 999 999. \text{E.g.}, \text{\textbelarusian{\AsbukTrad{page}}} produces KA.
\asbukTrad
 • \asbukTrad: same as \AsbukTrad but in lowercase.

6.5 bengali ←

Options:
 • numerals = Western, Bengali, or Devanagari
 • changecounternumbering = *true or false
 Use specified numerals for headings and page numbers.

6.6 catalan

Options:
 • babelshorthands ← = *true or false
 Activates the shorthands "l and "L to type geminated l or L.

Commands:
\l.l
 • \l.l and \l.L ← can be used to type a geminated l, as in colaborar, similar to babel (the glyph U+00B7 MIDDLE DOT is used as a geminating sign).
\L.L

6.7 croatian

Options:
 • babelshorthands ← = *true or false
 If this is turned on, the following shorthands for fine-tuning hyphenation and micro-typography of Croatian words are activated.
 "| disables a ligature at this position.

\text{See http://en.wikipedia.org/wiki/Cyrillic_numerals.}
“= for an explicit hyphen with a breakpoint, allowing for hyphenation at the other points preset in the hyphenation patterns (as opposed to plain -).

“- for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.

“- adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \-).

“" allows for a line break at this position (without hyphenation sign).

“/ a slash that allows for a subsequent line break. As opposed to \slash, hyphenation at the breakpoints preset in the hyphenation patterns is still allowed.

Furthermore, the following shorthands generate easy access to Croatian digraphs (ligatures):

“dz Generates the ligature dž if the font provides it. If not, the two characters are output separately. Also available for "Dz (Dž) and "DZ (DŽ).

“lj Generates the ligature lj if the font provides it. If not, the two characters are output separately. Also available for "Lj (Lj) and "LJ (LJ).

“nj Generates the ligature nj if the font provides it. If not, the two characters are output separately. Also available for "Nj (Nj) and "NJ (NJ).

Finally, there are also four shorthands for quotation marks:

“` for Croatian left double quotes (").

“' for Croatian right double quotes (").

“> for Croatian left guillemets (»).

“< for Croatian right guillemets («).

disableligatures ← *true or false

If this is true, all Croatian ligatures (for digraphs such as dž) will be replaced by single characters. This can be useful if the ligatures on your font are broken (if the font does not have them, they are automatically replaced).

splithyphens ← *true or false

According to Croatian typesetting conventions, if a word with a hard hyphen (such as je-li) is hyphenated at this hyphen, a second hyphenation character is to be inserted at the beginning of the line that follows the hyphenation (je-/-li). By default, this is done automatically (if you are using
Lua\TeX, the luavlna package is loaded to achieve this). Set this option to false to disable the feature.

6.8 czech

Options:

- **babelshorthands** ← *true or false
 - If this is turned on, the following shorthands for Czech are activated:
 - `=` for an explicit hyphen sign which is repeated at the beginning of the next line when hyphenated, as common in Czech typesetting (only needed with splithyphens=false).
 - `''` for Czech left double quotes („).
 - `"'` for Czech right double quotes (”).
 - `">` for Czech left double guillemets (»).
 - `"<` for Czech right double guillemets («).

- **splithyphens** ← *true or false
 - According to Czech typesetting conventions, if a word with a hard hyphen (such as je-li) is hyphenated at this hyphen, a second hyphenation character is to be inserted at the beginning of the line that follows the hyphenation (je-/-li). By default, this is done automatically ← (if you are using Lua\TeX, the luavlna package is loaded to achieve this). Set this option to false to disable the feature.

- **vlna** ← *true or false
 - According to Czech typesetting conventions, single-letter words (nonsyllable prepositions) must not occur at line ends. Polyglossia takes care of this automatically by default ← (if you are using Lua\TeX, the luavlna package is loaded to achieve this). Set this option to false to disable the feature.

6.9 dutch

Options:

- **babelshorthands** ← *true or false
 - If this is turned on, the following shorthands defined for fine-tuning hyphenation and micro-typography of Dutch words are activated:
"- adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \- in default \TeX).

"- for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.

"| disables a ligature at this position.

" " allows for a line break at this position (without hyphenation sign).

"/ a slash that allows for a subsequent line break. As opposed to \slash, hyphenation at the breakpoints preset in the hyphenation patterns is still allowed.

\- In addition, the macro \- is redefined to allow hyphens in the rest of the word (equivalent to ".-.").

6.10 english

Options:

- \texttt{\textit{variant} = \texttt{american} (= us), usmax (same as american but with additional hyphenation patterns), british (= uk), australian, canadian \rightarrow, or newzealand}

- \texttt{\textit{ordinalmonthday} = *true or false}
 The default value is true for variant=british.

6.11 esperanto

Commands:

- \hodiau and \hodiaun are special forms of \today. The former produces \hodiau the date in Esperanto preceded by the article (\texttt{la}), which is the most common date format. The latter produces the same date format in accusative case.

6.12 finnish

Options:

- \texttt{\textit{babelshorthands} \rightarrow = *true or false}
 If this is turned on, the following shorthands for fine-tuning hyphenation and micro-typography of Finnish words are activated:

- "- adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \-).
"- for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.

"| disables a ligature at this position.

" " allows for a line break at this position (without hyphenation sign).

"/ a slash that allows for a subsequent line break. As opposed to \slash, hyphenation at the breakpoints preset in the hyphenation patterns is still allowed.

6.13 french

Options:

- **\texttt{variant}** = \textit{french} or \textit{canadian} (= \textit{acadian}) ← \textit{swiss} ←

 Currently, the only difference between the four variants is that \textit{swiss} uses \texttt{thincolonspace=true} by default since this conforms to the Swiss conventions.

- **\texttt{autospacing}** = \texttt{*true} or \texttt{false}

 One of the most distinct features of French typography is the addition of extra spacing around punctuation and quotation marks (guillemets). By default, polyglossia adds these spaces automatically, so you don't need to enter them. This options allows you to switch this feature off globally.

- **\texttt{thincolonspace}** ← \texttt{*true} or \texttt{false}

 With \texttt{variant=swiss}, the default value is \texttt{true}. If \texttt{false}, a full (non-breaking) interword space is inserted before a colon. If \texttt{true}, a thinner space – as before ; , !, and ? – is used. Note that this option must be set after the \texttt{variant} option.

- **\texttt{autospaceguillemets}** ← \texttt{*true} or \texttt{false}

 If you only want to disable the automatic addition of spacing after opening and before closing guillemets (and not at punctuation), set this to \texttt{false}. Note that the more general option \texttt{autospacing} overrides this.

- **\texttt{autospacetypewriter}** ← \texttt{*true} or \texttt{false}

 By default, automatic spacing is disabled in typewriter font. If this is enabled, spacing in typewriter context is the same as with roman and sans serif font, depending on the \texttt{autospacing} and \texttt{autospaceguillemets} settings (note that this was the default up to v. 1.44).

\[^8]\text{Up to version 1.44, the option was called automaticspacesaroundguillemets. For backwards compatibility reasons, the more verbose old option is still supported.}
\[^9]\text{Babel's syntax \texttt{OriginalTypewriter} is also supported.}
• **frenchfootnote = *true or false**

 If true, footnotes start with a non-superscripted number followed by a dot, as common in French typography. Note that this might interfere with the specific footnote handling of classes or packages. Also note that this option is only functional (by design) if French is the main language.

• **frenchitemlabels ← *true or false**

 If true, itemize item labels use em-dashes throughout, as common in French typography. Note that this option is only functional (by design) if French is the main language. Also, it might interfere with list packages such as enumitem.

• **frenchpart ← *true or false**

 By default, polyglossia modifies part headings to match French conventions (Première partie rather than Partie I). Next to the standard classes, specifics of KOMA-script, memoir and the titlesec package are taken into account. With other classes or packages, redefinition might fail if these have particular part settings. In such case, or if you don’t want the redefinition, you can switch off the feature by passing false to this option.

• **itemlabels ← ⟨code⟩ (default value: \textemdash)**
 v1.46

 If frenchitemlabels is true, you can customize here the used item label of all levels.

• **itemlabeli ← ⟨code⟩ (default value: \textemdash)**
 v1.46

 If frenchitemlabels is true, you can customize here the used item label of the first level.

• **itemlabelii ← ⟨code⟩ (default value: \textemdash)**
 v1.46

 If frenchitemlabels is true, you can customize here the used item label of the second level.

• **itemlabeliii ← ⟨code⟩ (default value: \textemdash)**
 v1.46

 If frenchitemlabels is true, you can customize here the used item label of the third level.

• **itemlabeliv ← ⟨code⟩ (default value: \textemdash)**
 v1.46

 If frenchitemlabels is true, you can customize here the used item label of the fourth level.

Commands:

\texttt{\NoAutoSpacing} ← \texttt{AutoSpacing}

• \NoAutoSpacing ← disables automatic spacing around punctuation and quotation marks in all following text. The command can also be used locally if braces are used for grouping: {\NoAutoSpacing foo:bar}

• \AutoSpacing ← enables automatic spacing around punctuation and quo-
tation marks in all following text. The command can also be used locally if braces are used for grouping: \{AutoSpacing regarde!\}

6.14 gaelic ←

Options:

‣ variant = irish or scottish

6.15 georgian ←

Options:

‣ babelshorthands = *true or false

If this is turned on, the following shorthands are activated:

" - adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \-).

" = adds an explicit hyphen with a breakpoint, allowing for hyphenation at the other points preset in the hyphenation patterns (as opposed to plain -).

" - for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.

" | disables a ligature at this position.

" " allows for a line break at this position (without hyphenation sign).

", thinspace for initials with a breakpoint in following surname.

" for German-style left double quotes (looks like „).

" " for German-style right double quotes (looks like ”).

"< for French-style left double quotes (looks like «).

"> for French-style right double quotes (looks like »).

There are also three shorthands for the Cyrillic dash (тире), which is shorter than the emdash but longer than the endash (namely 0.8 em). Note that, since it is not covered by unicode, this character is faked by telescoping two endashes:

"--- Cyrillic dash for the use in normal text. This requires preceding space in input (trailing space is optional) and prints with a non-breakable thin space before and after the dash.

"--- Cyrillic dash for the use in compound names (surnames). As opposed to "--- this removes any space before and after the dash.
- Cyrillic dash for denoting direct speech. This adds a larger space after the dash. Space before the dash is output as is.

- **numerals** = *arabic* or *georgian*
 Uses either Arabic numerals or Georgian alphanumerical numbering.

- **oldmonthnames** = *true* or *false*
 Uses traditional Georgian month names.

6.16 german

Options:

- **variant** = *german*, austrian, or swiss ←
 Setting variant=austrian or variant=swiss uses some lexical variants. With spelling=old, variant=swiss furthermore loads specific hyphenation patterns.

- **spelling** = *new (= 1996)* or *old (= 1901)*
 Indicates whether hyphenation patterns for traditional (1901) or reformed (1996) orthography should be used. The latter is the default.

- **babelshorthands** = *true* or *false*
 If this is turned on, all shorthands defined in babel for fine-tuning hyphenation and micro-typography of German words are activated.

ck for ck to be hyphenated as k-k (1901 spelling).

ff for ff to be hyphenated as ff-f (1901 spelling); this is also available for the letters l, m, n, p, r and t.

| disables a ligature at this position (*e.g.*, Auf|lage).

=" for an explicit hyphen with a breakpoint, allowing for hyphenation at the other points preset in the hyphenation patterns (as opposed to plain `-`).

~ for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable, *e.g.*, bergauf und *~-ab.*

-= adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \-).

" allows for a line break at this position (without hyphenation sign); *e.g.*, (pseudo"-)"wissenschaftlich.

/ a slash that allows for a subsequent line break. As opposed to \slash, hyphenation at the breakpoints preset in the hyphenation patterns is still allowed.
There are also four shorthands for quotation signs:

```
`  for German-style left double quotes („)
``       for German-style right double quotes (“)
``<  for French-style left double quotes («)
``>  for French-style right double quotes (»).
```

- `script ← latin or blackletter ← (= fraktur)

Setting `script=blackletter` adapts the captions for typesetting German in blackletter type (using the long s (ſ) where appropriate).

6.17 greek

Options:

- `variant = monotonic (= mono), polytonic (= poly), or ancient`
- `numerals = greek or arabic`
- `attic = *true or false`

Commands:

- `\Greeknumber` and `\greeknumber` (see section 8.3).
- `\atticnumeral` (activated with the option `attic=true`), displays numbers using the acrophonic numbering system (defined in the Unicode range U+10140–U+10174).

6.18 hebrew

Options:

- `numerals = hebrew or arabic`
- `calendar = hebrew or gregorian`
- `marcheshvan = *true or false`

If true, the second month of the civil year will be output as נְרֵחשון (Marcheshvan) rather than חוֹשֵׁן (Heshvan), which is the default.

Commands:

- `\hebrewnumeral` (see section 8.3).
- `\hebrewnumeral` (= \hebrewalph) (see section 8.3).
- `\hebrewalph` (see section 6.2).
- `\aemph` (see section 6.2).
6.19 hindi

Options:

- numerals = Western or Devanagari

6.20 hungarian

Options:

- swapstrings ← *all, captions, headings, headers, hheaders, or none

In Hungarian, some caption strings need to be in a different order than in other languages (e.g., 1. fejezet instead of Chapter 1). By default, polyglossia tries hard to provide the correct order for different classes and packages (standard classes, KOMA-script, memoir, and titlesec package should work, as well as fancyhdr and caption). However, since the definition of these strings is not standardized, the redefinitions might not work and even interfere badly if you use specific classes or packages that redefine the respective strings themselves. In this case, you can disable some or all changes. The possibilities are:

- all: Redefine figure and table captions, part and chapter headings, and running headers (= default setting)
- captions: Redefine figure and table captions only
- headings: Redefine part and chapter headings only
- headers: Redefine running headers only
- hheaders: Redefine part and chapter headings as well as running headers
- none: Do not redefine anything

Commands:

\ontoday
\ondatehungarian
\ondatehungarian

\ontoday (= \ondatehungarian): special form of \today which produces a slightly different date format as used in prepositional phrases (such as ‘on February 10th’) in Hungarian.

6.21 italian

Options:

- babelshorthands ← *true or false

\^See the documentation of the xgreek package for more details.
Activates the ” character as a switch to perform etymological hyphenation when followed by a letter. Furthermore, the following shorthands are activated:

“ ” double raised open quotes (the Italian keyboard misses the backtick).

“< ” open guillemet (looks like «).

“> ” closing guillemet (looks like »).

“/ ” a slash that allows for a subsequent line break. As opposed to \slash, hyphenation at the breakpoints preset in the hyphenation patterns is still allowed.

“- ” adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \-).

6.22 korean ←

Options:

• **variant** = plain, classic, or modern
 These variants control spacing before/after CJK punctuations.
 • plain: Do nothing
 • classic: Suitable for text with no interword spaces. This option forces CJK punctuations to half-width, and inserts half-width glue around them.
 • modern: Suitable for text with interword spaces. This option forces CJK punctuations to half-width, and inserts small (half of interword space) glue around them.

• **captions** = hangul or hanja

• **swapstrings** ← = *all, headers, headings, or none
 With this option, Korean-style part and chapter headings, and running headers are available. It is similar to Hungarian (see 6.20) except that figure and table captions are not touched.
 • all: Redefine part and chapter headings, and running headers (= default setting)
 • headings: Redefine part and chapter headings only
 • headers: Redefine running headers only
 • none: Do not redefine anything
6.23 kurdish

Options:

- **variant** = kurmanji or sorani
- **script** = Arabic or Latin
 Defaults are Arabic for Sorani and Latin for Kurmanji.
- **numerals** = western or eastern
 Defaults are western for Latin and eastern for Arabic script, depending on the selection above.
- **abjadjimnotail** = *true or false
 Set this to true if you want the abjad form of the number three to be ج – as in the manuscript tradition – instead of the modern usage ج.

Commands:

- **\ontoday**: special form of \today which produces a slightly different date format as used in prepositional phrases (as in ‘on February 10th’). Only available for Latin script.
- **\abjad** (see section 8.3)
- **\aemph** (see section 6.2)

6.24 lao

Options:

- **numerals** = lao or arabic

6.25 latin

Options:

- **variant** = classic, medieval, modern, or ecclesiastic
 These variants refer to different spelling conventions. The classic and the medieval variant do not use the letters U and v, but only V and u. This concerns predefined terms like month names as well as the behaviour of the \MakeUppercase and the \MakeLowercase command. The medieval and the ecclesiastic variant use the ligatures æ and œ. See table 4 for examples.
 Furthermore, the ecclesiastic variant takes care for a punctuation spacing similar to French, but with smaller spaces, as provided for PDFTeX by the ecclesiastic package.
Table 4. Spelling differences between the Latin language variants.

The capitalization of month names and the use of i/j may be affected by the `capitalizemonth` and the `usej` option.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Ianuarii</th>
<th>Ianuarii</th>
<th>Ianuarii</th>
<th>Ianuarii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nouembris</td>
<td>Nouembris</td>
<td>Novembris</td>
<td>Novembris</td>
<td>novembris</td>
</tr>
<tr>
<td>Praefatio</td>
<td>Praefatio</td>
<td>Praefatio</td>
<td>Praefatio</td>
<td>Praefatio</td>
</tr>
</tbody>
</table>

`\MakeUppercase{Iulius}` yields:

| | IVLIVS | IVLIVS | IULIUS | IULIUS |

Table 5. Latin default hyphenation styles

<table>
<thead>
<tr>
<th>Language variant</th>
<th>Default hyphenation style</th>
</tr>
</thead>
<tbody>
<tr>
<td>classic</td>
<td>classic</td>
</tr>
<tr>
<td>medieval</td>
<td>modern</td>
</tr>
<tr>
<td>modern</td>
<td>modern</td>
</tr>
<tr>
<td>ecclesiastic</td>
<td>modern</td>
</tr>
</tbody>
</table>

- **hyphenation** ← = classic, modern, or liturgical
 There are three different sets of hyphenation patterns for Latin. Separate documentation for them is available on the Internet. Each of the four variants mentioned above has its default set of hyphenation patterns as indicated by table 5. Use the hyphenation option if the default style does not fit your needs. Note that the liturgical hyphenation patterns are the default of none of the language variants. To use them, you have to say `hyphenation=liturgical` in any case.

- **ecclesiasticfootnotes** ← = *true or false
 Use footnotes as provided by the ecclesiastic package, which typesets footnotes with ordinary instead of superior numbers and without indentation. As many ecclesiastic documents and liturgical books use footnotes that are very similar to the ordinary \TeX ones, we do not use this footnote style as default even for the ecclesiastic variant.

 Note that this option is only possible if Latin is the main language of your

v1.46

https://github.com/gregorio-project/hyphen-la/blob/master/doc/README.md#hyphenation-styles

33
document.

- **usej** ← *true or false
 Use j/j in predefined terms. The letter j is not of ancient origin. In early modern times, it was used to distinguish the consonantic i from the vocalic i. Nowadays, the use of j has disappeared from most Latin publications. So false is the default value for all four language variants. Use this option if you prefer Januarii and Maji to Ianuarii and Maii.

- **capitalizemonth** ← *true or false
 Capitalize the month name when printing dates (using the \today command). Traditionally, month names are capitalized. However, in recent liturgical books they are lowercase. So true is the default value for the variants classic, medieval, and modern, whereas false is the default value for the ecclesiastic variant.

- **babelshorthands** = *true or false
 Enable the following shorthands inherited from babel-latin and the ecclesiastic package.

 - "< for « (left guillemet)
 - "> for » (right guillemet)
 - " If no other shorthand applies, " before any letter character defines an optional break point allowing further break points within the same word (as opposed to the \- command).
 - "| the same as ", but also possible before non-letter characters
 - 'a for á (a with acute), also available for é, í, ó, ú, ý, æ, and Æ
 - 'A for Á (A with acute), also available for É, Í, Ó, Ú, Ý, Á, and Œ

 The following shorthands are only available for the medieval and the ecclesiastic variant.

 - *ae for æ (ae ligature), also available for Æ
 - *Ae for Â (AE ligature), also available for Æ
 - *AE for Â (AE ligature), also available for Æ
 - 'ae for æ (ae ligature with acute), also available for Æ
 - 'Ae for Ā (AE ligature with acute), also available for Æ
 - 'AE for Ā (AE ligature with acute), also available for Æ

- **prosodicshorthands** ← *true or false
Enable shorthands for prosodic marks (macrons and breves) very similar to those provided by babel-latin using the withprosodicmarks modifier. Note that the active equality character used for macrons will cause problems with commands using key=value interfaces, such as the command \includegraphics{scale=2}{...}. Use \shorthandoff{=} before such commands (and \shorthandon{=} thereafter) within every environment with prosodic shorthands enabled.

The following shorthands are available.

\=a for ă (a with macron), also available for ē, ĩ, ō, ŭ, and ŭ.
\=A for Ā (A with macron), also available for Ė, Į, Ő, Ū, V̄, and Ĺ. Note that a macron above the letter V is only displayed if your font supports the Unicode character 0304 (combining macron).
\=ae for ăe (ae diphthong with macron), also available for ė, ė, ŏ, ŭ, and ŭ. Note that macrons above diphthongs are only displayed if your font supports the Unicode character 035E (combining double macron).
\=Ae for Āe (Ae diphthong with macron), also available for Ėu, Ėu, and Ōe.
\=AE for ĀE (AE diphthong with macron), also available for ĖU, ĖU, and ŌE.
\^a for ă (a with breve), also available for ē, ī, ŏ, ŭ, and ŭ. Note that a breve above the letter y is only displayed if your font supports the Unicode character 0306 (combining breve).
\^A Ā (A with breve), also available for Ė, Į, Ő, Ū, V̄, and Ĺ. Note that breves above the letters V and Y are only displayed if your font supports the Unicode character 0306 (combining breve).

6.26 malay

Options:
- variant ← = indonesian or malaysian

6.27 marathi

Options:
- numerals = Devanagari or Western
6.28 mongolian ←

Currently, only the Khalkha variety in Cyrillic script is supported.

Options:

• **babelshorthands** = *true or false*

 If this is turned on, the following shorthands are activated:

 " - adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \-).

 " = adds an explicit hyphen with a breakpoint, allowing for hyphenation at the other points preset in the hyphenation patterns (as opposed to plain -).

 "- for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.

 "| disables a ligature at this position.

 " " allows for a line break at this position (without hyphenation sign).

 ",, thinspace for initials with a breakpoint in following surname.

 "' for German-style left double quotes (looks like „).

 "' for German-style right double quotes (looks like “).

 "< for French-style left double quotes (looks like «).

 "> for French-style right double quotes (looks like »).

 There are also three shorthands for the Cyrillic dash (тире), which is shorter than the emdash but longer than the endash (namely 0.8 em). Note that, since it is not covered by unicode, this character is faked by telescoping two endashes:

 "--- Cyrillic dash for the use in normal text. This requires preceding space in input (trailing space is optional) and prints with a non-breakable thin space before and after the dash.

 "--- Cyrillic dash for the use in compound names (surnames). As opposed to "--- this removes any space before and after the dash.

 "-" Cyrillic dash for denoting direct speech. This adds a larger space after the dash. Space before the dash is output as is.

• **numerals** = *arabic, cyrillic-alph or cyrillic-trad*

 Uses either Arabic numerals or Cyrillic alphanumerical numbering. The two Cyrillic variants differ as follows:
• cyrillic-alph steps through the Cyrillic alphabet. Thus it can only be used up to 30.
• cyrillic-trad (= cyrillic) uses a traditional Cyrillic alphanumeric system.\footnote{See https://en.wikipedia.org/wiki/Cyrillic_numerals.} It supports numbers up to 999 999.

Commands:
\texttt{\Asbuk}: produces uppercased Cyrillic alphanumerals, for environments such as enumerate. It steps through the Cyrillic alphabet and thus it can only be used up to 30. The command takes a counter as argument, \textit{e.g.}, \texttt{textmongolian{\Asbuk{section}}} produces E.

\texttt{\asbuk}: same as \texttt{\Asbuk} but in lowercase.

\texttt{\AsbukTrad}: same as \texttt{\Asbuk} but using the traditional Cyrillic alphanumeric numbering which supports numbers up to 999 999. \textit{E.g.}, \texttt{textmongolian{\AsbukTrad{section}}} produces S.

\texttt{\asbukTrad}: same as \texttt{\AsbukTrad} but in lowercase.

6.29 norwegian

Options:
• \texttt{variant} ← bokmal or nynorsk

6.30 persian

Options:
• \texttt{numerals} ← western or eastern
• \texttt{abjadimnotail} ← *true or false

\textit{Set this to true if you want the abjad form of the number three to be ج – as in the manuscript tradition – instead of the modern usage ۳.}

Commands:
\texttt{\abjad} (see section 8.3)
\texttt{\aemph} (see section 6.2).

6.31 portuguese

Options:
• \texttt{variant} ← brazilian or portuguese
6.32 russian

Options:

- **babelshorthands** = *true or false

 If this is turned on, the following shorthands are activated:

 "- adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \-).

 "= adds an explicit hyphen with a breakpoint, allowing for hyphenation at the other points preset in the hyphenation patterns (as opposed to plain \-).

 "\ adds an explicit hyphen without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.

 "\| disables a ligature at this position.

 "\ allows for a line break at this position (without hyphenation sign).

 There are also three shorthands for the Cyrillic dash (тире), which is shorter than the emdash but longer than the endash (namely 0.8 em). Note that, since it is not covered by unicode, this character is faked by telescoping two endashes:

 "--- Cyrillic dash for the use in normal text. This requires preceding space in input (trailing space is optional) and prints with a non-breakable thin space before and after the dash.

 "--- Cyrillic dash for the use in compound names (surnames). As opposed to "--- this removes any space before and after the dash.

 "---* Cyrillic dash for denoting direct speech. This adds a larger space after the dash. Space before the dash is output as is.

- **forceheadingpunctuation** ← = *true or false

 By default, chapter and section numbers always have a trailing punctuation in Russian (as in 1.1 as opposed to 1.1). If this option is set to false, polyglossia will not touch heading punctuation, so this will be whatever the class or a package determines.

- **indentfirst** ← = *true or false

 By default, all paragraphs are indented in Russian, also those after a chapter or section heading. If this option is false, the latter paragraphs are not indented, as normal in \LaTeX.

- **spelling** = *modern or old

 This option is for captions and date only, not for hyphenation.

v1.50

v1.46

38
• numerals = arabic, cyrillic-alph or cyrillic-trad
 Uses either Arabic numerals or Cyrillic alphanumerical numbering. The two Cyrillic variants differ as follows:
 • cyrillic-alph steps through the Cyrillic alphabet. Thus it can only be used up to 30.
 • cyrillic-trad (= cyrillic) uses a traditional Cyrillic alphanumeric system. It supports numbers up to 999 999.

Commands:
\Asbuk
 • \Asbuk: produces uppercased Cyrillic alphanumerals, for environments such as enumerate. It steps through the Cyrillic alphabet and thus it can only be used up to 30. The command takes a counter as argument, e.g., \textrussian{\Asbuk{section}} produces Е.
\asbuk
 • \asbuk: same as \Asbuk but in lowercase.
\AsbukTrad
 • \AsbukTrad: same as \Asbuk but using the traditional Cyrillic alphanumeric numbering which supports numbers up to 999 999.
 E.g., \textrussian{\AsbukTrad{page}} produces ЬѲ.
\asbukTrad
 • \asbukTrad: same as \AsbukTrad but in lowercase.

6.33 sami ←
Currently support for Sami is limited to Northern Sami.

6.34 sanskrit

Options:
• script ← = Devanagari, Gujarati, Malayalam, Bengali, Kannada, Telugu, or Latin
 The value is passed to fontspec in cases where the respective \langle script\rangle font is not defined. This can be useful if you typeset Sanskrit texts in scripts other than Devanagari.
• numerals ← = Devanagari or Western

v1.45

v1.0.2

v1.45

6.35 serbian

Options:

- **script** = Cyrillic or Latin
- **numerals** = arabic, cyrillic-alph or cyrillic-trad

Uses either Arabic numerals or Cyrillic alphanumerical numbering. The two Cyrillic variants differ as follows:
 - cyrillic-alph steps through the Cyrillic alphabet. Thus it can only be used up to 30.
 - cyrillic-trad (= cyrillic) uses a traditional Cyrillic alphanumerical system.\(^{14}\) It supports numbers up to 999 999.

Commands:

\texttt{\textbackslash \textserbian\{Asbuk\}}: produces uppercased Cyrillic alphanumerals, for environments such as enumerate. It steps through the Cyrillic alphabet and thus it can only be used up to 30. The command takes a counter as argument, e.g., \texttt{\textserbian\{Asbuk\{section\}}\} produces Е.

\texttt{\textserbian\{asbuk\}}: same as \texttt{\textserbian\{Asbuk\}} but in lowercase.

\texttt{\textserbian\{AsbukTrad\}}: same as \texttt{\textserbian\{Asbuk\}} but using the traditional Cyrillic alphanumerical numbering which supports numbers up to 999 999.

\texttt{\textserbian\{AsbukTrad\{page\}}\} produces М.

\texttt{\textserbian\{asbukTrad\}}: same as \texttt{\textserbian\{AsbukTrad\}} but in lowercase.

6.36 slovak

Options:

- **babelshorthands** \(\leftarrow \) *true or false*

\(\texttt{v1.46}\)

If this is turned on, the following shorthands for Slovak are activated:

- **=** for an explicit hyphen sign which is repeated at the beginning of the next line when hyphenated, as common in Slovak typesetting (only needed with \texttt{\textserbian\{split\}}\texttt{\textserbian\{hyphens\}}\texttt{\textserbian\{false\}}).

- **\textbackslash** disables a ligature at this position.

- **\textbackslash -** for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.

- **\textbackslash -** adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \textbackslash -).

\(^{14}\text{See https://en.wikipedia.org/wiki/Cyrillic_numerals.}\)
allows for a line break at this position (without hyphenation sign).

/ a slash that allows for a subsequent line break. As opposed to \slash, hyphenation at the breakpoints preset in the hyphenation patterns is still allowed.

‘ for Slovak left double quotes (looks like „).

’ for Slovak right double quotes (looks like “).

> for Slovak left double guillemets (looks like »).

< for Slovak right double guillemets (looks like «).

‣ **splithyphens** ← = *true or false
According to Slovak typesetting conventions, if a word with a hard hyphen (such as je-li) is hyphenated at this hyphen, a second hyphenation character is to be inserted at the beginning of the line that follows the hyphenation (je-li). By default, this is done automatically (if you are using Lua\TeX{}, the \texttt{luavlna} package is loaded to achieve this). Set this option to \texttt{false} to disable the feature.

‣ **vlna** ← = *true or false
According to Slovak typesetting conventions, single-letter words (non-syllable prepositions) must not occur at line ends. Polyglossia takes care of this automatically by default (if you are using Lua\TeX{}, the \texttt{luavlna} package is loaded to achieve this). Set this option to \texttt{false} to disable the feature.

6.37 **slovenian**

Options:

‣ **localalph** = *true or false
If \texttt{true}, alpha-numeric counters will use a localized version including characters with caron (a, b, c, č, d, ...).

6.38 **sorbian**

Options:

‣ **variant** ← = lower or upper
‣ **olddate** ← = *true or false
If \texttt{true}, \texttt{\today} will use traditional Sorbian month names (\textit{i.e.}, it will be synonymous to \texttt{\oldtoday} below).
Commands:

\oldtoday

- \oldtoday: outputs the current date using traditional Sorbian month names, even if olddate is false.

6.39 spanish

Options:

- \variant ← = spanish or mexican
- \spanishoperators ← = *all, accented, spaced, none, or false

Determines of and how math operators are localized to Spanish.

- accented causes some math operators to use accents where usual in Spanish (lím, lim sup, lim inf, máx, mín, inf, mód).
- spaced causes some math operators to use spaces where usual in Spanish (arc cos, arc sen, arc tg).
- all activates accented and spaced and furthermore provides Spanish localizations of \sin (sen), \tan (tg), \sinh (senh), and \tanh (tgh).
- none does no localization at all (default setting).

Commands:

\arcsen
\arctg
\sen
\senh
\tg
\tgh
\spanishoperator

\spanishoperator{cotg} defines a command \cotg that outputs cotg in math. The optional argument of the command lets you specify the spelling, if needed, e.g., \spanishoperator[arc\,ctg]{arcctg}.

6.40 syriac

Options:

- \numerals ← = western (i.e., 1234567890), eastern (for which the Oriental Arabic numerals are used: ٠١٢٣٤٥٦٧٨٩٠), or abjad

Commands:

\abjadsyriac
\abjadsyriac (see section 8.3)
6.41 thai

Options:
- **numerals** = thai or arabic
To insert word breaks, you need to use an external processor. See the documentation to \texttt{thai-latex} and the file \texttt{testthai.tex} that comes with this package.

6.42 tibetan

Options:
- **numerals** = tibetan or arabic

6.43 ukrainian

Options:
- **babelshorthands** = *true or false
If this is turned on, the following shorthands are activated:
 - “-” adds a hyphenation point that does still allow for hyphenation at the points preset in the hyphenation patterns (as opposed to \(-\)).
 - “=” adds an explicit hyphen with a breakpoint, allowing for hyphenation at the other points preset in the hyphenation patterns (as opposed to plain \(-\)).
 - “~” for a hyphen sign without a breakpoint. Useful for cases where the hyphen should stick at the following syllable.
 - “|” disables a ligature at this position.
 - “” allows for a line break at this position (without hyphenation sign).

There are also three shorthands for the Cyrillic dash (тире), which is shorter than the emdash but longer than the endash (namely 0.8 em). Note that, since it is not covered by unicode, this character is faked by telescoping two endashes:

 - “---” Cyrillic dash for the use in normal text. This requires preceding space in input (trailing space is optional) and prints with a non-breakable thin space before and after the dash.
 - “---” Cyrillic dash for the use in compound names (surnames). As opposed to “---” this removes any space before and after the dash.
“--* Cyrillic dash for denoting direct speech. This adds a larger space after the dash. Space before the dash is output as is.

- **numerals** = *arabic*, *cyrillic-alph* or *cyrillic-trad*

 Uses either Arabic numerals or Cyrillic alphanumerical numbering. The two Cyrillic variants differ as follows:

 - *cyrillic-alph* steps through the Cyrillic alphabet. Thus it can only be used up to 30.
 - *cyrillic-trad (= cyrillic)* uses a traditional Cyrillic alphanumerical system.\(^{15}\) It supports numbers up to 999 999.

Commands:

- \texttt{\Asbuk}: produces uppercased Cyrillic alphanumerals, for environments such as *enumerate*. It steps through the Cyrillic alphabet and thus it can only be used up to 30. The command takes a counter as argument, e.g., \texttt{\textukrainian{\Asbuk{section}}} produces Е.

- \texttt{\asbuk}: same as \texttt{\Asbuk} but in lowercase.

- \texttt{\AsbukTrad}: same as \texttt{\Asbuk} but using the traditional Cyrillic alphanumeric numbering which supports numbers up to 999 999. E.g., \texttt{\textukrainian{\AsbukTrad{page}}} produces МД.

- \texttt{\asbukTrad}: same as \texttt{\AsbukTrad} but in lowercase.

6.44 **welsh**

Options:

- **date** = *long* or *short*

7 **Modifying or extending captions, date formats and language settings**

Polyglossia uses the following macros to define language-specific captions (*i.e.*, strings such as "chapter"), date formats and additional language settings (\texttt{\lang}) is to be replaces with the respective language name):

- \texttt{\captions{\lang}} stores definitions of caption strings (such as, in the case of English, \texttt{\def\chaptername{Chapter}})

- \texttt{\date{\lang}} stores definitions of date formats (usually redefinitions of \texttt{\today}, in some cases also definitions of additional date commands)

\blockextras{lang} • \blockextras{lang} stores macros that are to be executed when the language \text{lang} is activated via \selectlanguage{command} or the \text{lang} environment

\inlineextras{lang} • \inlineextras{lang} stores macros that are to be executed when the language \text{lang} is activated locally via \text{\text{lang}} command

\noextras{lang} • \noextras{lang} stores macros that are to be executed when the language \text{lang} is closed

In order to redefine internal macros, we recommend to use the command \gappto. For compatibility with babel the command \addto is also available to the same effect. For instance, to change the \chaptername for language \text{lingua}, you can do this:

\gappto\captionslingua{\def\chaptername{Caput}}

Note that this needs to be done after the respective language has been loaded with \setmainlanguage or \setotherlanguage.

Specifically for package authors, analogous commands are provided which are only executed if a specific language \text{variety} is used. As opposed to the macros above, these refer to babel names. Other than that, the function is identical:

\captions@bbl@{babelname} • \captions@bbl@{babelname}
\date@bbl@{babelname} • \date@bbl@{babelname}
\blockextras@bbl@{babelname} • \blockextras@bbl@{babelname}
\inlineextras@bbl@{babelname} • \inlineextras@bbl@{babelname}
\noextras@bbl@{babelname} • \noextras@bbl@{babelname}

By default, these macros are undefined. If they are defined (e.g., by an external package), they will be executed after their respective \text{lang} counterpart and thus can be used to overwrite definitions of the former. Again, use \gappto to define/modify these macros. For instance, to add a new caption \footnotename to the Swiss variety of German (babel name \text{nswissgerman}), you can do this:

\gappto\captions@nswissgerman{\def\footnotename{Fussnote}}

If you do this in a document preamble rather than in a package, you need to embrace the redefinition by \makeatletter and \makeatother due to the @ in the macro names.

Finally, as soon as the language has been switched (either inline or as a block), polyglossia executes the (by default empty) hook \polyglossia@language@switched

to which you can append arbitrary code (via \gappto) that should be executed if (a particular) language is being activated. This is done before any of the
above macros are issued (so you can still alter them), but at a point where `\languagename`, `\babelname` and `\languageid` are already set, so you can condition on specific languages in your code. This hook is particularly provided for package authors.

8 Script-specific numbering

Languages and scripts have specific numbering conventions. Some use decimal digits (e.g., Arabic numerals), some use alphabetic or alphanumerical notation (e.g., Roman numbering). In some cases, different conventions are available (e.g., Mashriq or Maghrib numbering in Arabic script, Arabic or Hebrew [= alphanumerical] numbering in Hebrew).

If the latter is the case, `polyglossia` provides language options which allow you to select or switch to the suitable convention. With the appropriate language option set, `polyglossia` will automatically convert the output of internal \TeX counters to their localized forms, for instance to display page, chapter and section numbers.

For manual input of numbers, macros are provided. These convert Arabic numeric input to the respective local decimal digit (see sec. 8.2), alphanumerical representation (see sec. 8.3) or whatever is appropriate (see sec. 8.1). The possibilities are described in turn.

8.1 General localization of numbering

As of 1.45, `polyglossia` provides a generic macro `\localnumeral` which converts numbers to the current local form (which might be script-specific decimal digit, an alphabetic numbering or something else). For instance in an Arabic environment `\localnumeral{42}` yields ٢٤, whereas in an Hebrew environment, it results in מב with `numerals=hebrew`, and 42 with `numerals=arabic`. Note that, as opposed to the various digits macros (described in sec. 8.2), the argument of `\localnumeral` must consist of numbers only.

For the conversion of counters, the starred version `\localnumeral*` is provided. This takes a counter as argument. For instance in an Arabic environment `\localnumeral*[page]` yields ٢٤.

For scripts with alphanumerical numbering, the variants `\Localnumeral` and `\Localnumeral*` provide the uppercased versions.

All these macros provide the following options:
8.2 Non-Western decimal digits

In addition to the generic macros described above, polyglossia provides language-specific conversion macros which can be used if the generic ones do not suit the need.\footnote{A third method are so-called TECKit fontmappings. Those can be activated with the \texttt{fontspec} Mapping option, using arabicdigits, farsidigits or thaidigits. For instance if \texttt{arabicfont} is defined with the option Mapping=arabicdigits, typing \texttt{textarabic{2010}} results in ٢٠١٠. Note that this method has some drawbacks, though, for instance when the value of a counter has to be written and read from auxiliary files. So please use this with care.} The macros have the form \texttt{\langle script\rangle digits}. They convert Arabic numerical input and leave every other input untouched. In an Arabic context, for instance, \texttt{\arabicdigits{9182/738543-X}} yields ٣٤٥٨٣٧/٢٨١٩.

Currently, the following macros are provided:

\begin{itemize}
 \item \texttt{\arabicdigits}
 \item \texttt{\bengalidigits}
 \item \texttt{\devanagaridigits}
 \item \texttt{\farsidigits}
 \item \texttt{\kannadadigits}
 \item \texttt{\khmerdigits}
 \item \texttt{\laodigits}
 \item \texttt{\nkodigits}
 \item \texttt{\thaidigits}
 \item \texttt{\tibetandigits}
\end{itemize}

8.3 Non-Latin alphabetic numbering

They work in a similar way than the \texttt{\langle script\rangle digits} macros described above: They take Arabic numerical input and output the respective value in the local alphabetic numbering scheme (most of these macros are equivalent to \texttt{\localnumeral} and \texttt{\Localnumeral} in the respective context).
The following macros are provided:

\abjad
• \abjad outputs Arabic abjad numbers according to the Mashriq varieties. Example: \abjad{1863} yields ﺃﺐﺴﺞ.
\abjadmaghribi
• \abjadmaghribi outputs Arabic abjad numbers according to the Maghrib varieties. Example: \abjadmaghribi{1863} yields ﺃﺐﺴﺞ.
\abjadsyriac
• \abjadsyriac outputs Syriac abjad numerals. Example: \abjadsyriac{463} yields ﻃܣܓ.
\armeniannumeral
• \armeniannumeral produces Armenian alphabetic numbering. Example: \armeniannumeral{1863} yields ԱԲԿԳ.
\belarusiannumeral
• \belarusiannumeral produces Belarusian numbering, with uppercased variant (for alphanumerical variant) via \Belarusiannumeral. Depending on the numerals option in the Belarusian language selection, this is either Arabic digit or Cyrillic alphanumercial output.
Example: With numerals=latin \belarusiannumeral{19} yields 19, with numerals=cyrillic-trad \belarusiannumeral{19} results in и, with numerals=cyrillic-alph \belarusiannumeral{19} results in у.
\georgiannumeral
• \georgiannumeral produces Georgian alphabetic numbering. Example: \georgiannumeral{1863} yields ჩყჲგ.
\greeknumeral
• \greeknumeral produces Greek alphabetic numbering, \Greeknumeral outputs uppercased variants. Example: \greeknumeral{1863} yields ΑΩΞΓʹ, \Greeknumeral{1863} results in ΑΔΞΓʹ.
\hebrewnumeral, \Hebrewnumeral and \Hebrewnumeralfinal generate variants of Hebrew alphanumeric numerals. The commands behave exactly as they do in babel: \hebrewnumeral outputs the numbers without any decoration, \Hebrewnumeral adds gereshayim before the last letter, \Hebrewnumeralfinal uses in addition the final forms of Hebrew letters. Examples: \hebrewnumeral{1750} yields ﺇ٧٥٠, \Hebrewnumeral{1750} yields ﻧ٧٥٠, and \Hebrewnumeralfinal{1750} yields ٧٥٠.
\mongoliannumeral
• \mongoliannumeral produces Mongolian numbering, with uppercased variant (for alphanumerical variant) via \Mongoliannumeral. Depending on the numerals option in the Mongolian language selection, this is either Arabic digit or Cyrillic alphanumercial output.
Example: With numerals=latin \mongoliannumeral{19} yields 19, with numerals=cyrillic-trad \mongoliannumeral{19} results in и, with numerals=cyrillic-alph \mongoliannumeral{19} results in у.

18 A fine guide to numerals in Syriac can be found at http://www.garzo.co.uk/documents/syriac-numerals.pdf.
9 Footnotes in right-to-left context

With languages that use right-to-left scripts, footnote apparatuses are usually placed at the right side of the page bottom. Consequently, the footnote rule also is to be placed right. Things get more tricky, though, if right-to-left and left-to-right scripts are mixed. Then you might want to put the footnotes on some pages left, on some right, or even mix positions on a page. Thus, footnote handling in right-to-left context sometimes needs manual intervention. This is described in what follows.

9.1 Horizontal footnote position

When right-to-left languages are used, the \footnote command becomes sensitive to the text directionality. The footnote is always placed on the side that is currently the origin of direction: on the left side of the page in LTR paragraphs and on the right in RTL paragraphs.
For cases where this is not desired, two additional footnote commands are provided: \RTLfootnote and \LTRfootnote. \LTRfootnote always places the footnote on the left side, notwithstanding the current directionality. Likewise, \RTLfootnote always places it on the right side. Like \footnote, \RTLfootnote and \LTRfootnote provide an optional argument to customize the number.

9.2 Footnote rule length and position

The default placement of the footnote rule differs in Xe\TeX{} and Lua\TeX{} output (this is due to differences in the bidi and luabidi packages). With Xe\TeX{}, footnote rules are always placed left, which is often wrong in RTL context. With Lua\TeX{}, by contrast, the rule is placed always right if the main language is a right-to-left language, and always left if the main language is a left-to-right language, which is the right thing in many cases.

In both cases, you can change the default behavior as follows:

- Put \leftfootnoterule in the preamble to have all rules left-aligned.
- Put \rightfootnoterule in the preamble to have all rules right-aligned.
- Put \autofootnoterule in the preamble to have automatic placement depending on the context (see below for elaboration).
- Put \textwidthfootnoterule in the preamble to have a rule that spans the whole text width.

With \autofootnoterule, the first footnote on the current page determines the placement. Note that this automatic can fail with footnotes at page boundaries that differ in directionality from the first footnote on the page. You can work around such cases by switching to \rightfootnoterule or \leftfootnoterule on these pages.

Note also that the rule switches might interfere in bad ways with packages or classes that redefine footnotes themselves. This is also the reason why \autofootnoterule is not used by default.

10 Calendars

10.1 Hebrew calendar (hebrewcal.sty)

The package hebrewcal.sty is almost a verbatim copy of hebcal.sty that comes with babel. The command \Hebrewtoday formats the current date in the Hebrew calendar (depending of the current writing direction this will automatically set either in Hebrew script or in roman transliteration).
10.2 Islamic calendar (hijrical.sty)

This package computes dates in the lunar Islamic (Hijra) calendar.19 It provides two macros for the end-user. The command

\begin{verbatim}
\HijriFromGregorian{⟨year⟩}{⟨month⟩}{⟨day⟩}
\end{verbatim}

sets the counters Hijriday, Hijrimonth and Hijriyear. \Hijritoday formats the Hijri date for the current day. This command is now locale-aware ←: its output will differ depending on the currently active language. Presently polyglossia’s language definition files for Arabic, Farsi, Urdu, Turkish and Malay provide a localized version of \Hijritoday. If the formatting macro for the current language is undefined, the Hijri date will be formatted in Arabic or in roman transliteration, depending of the current writing direction. You can define a new format or redefine one with the command

\begin{verbatim}
\DefineHijriDateFormat{⟨lang⟩}{⟨code⟩}.
\end{verbatim}

The command \Hijritoday also accepts an optional argument to add or subtract a correction (in days) to the date computed by the arithmetical algorithm.20 For instance if \Hijritoday yields the date “7 Rajab 1429” (which is the date that was displayed on the front page of aljazeera.net on 11th July 2008), \Hijritoday[1] would rather print “8 Rajab 1429” (the date indicated the same day on the site gulfnews.com).

10.3 Farsi (jalālī) calendar (farsical.sty)

This package is an almost verbatim copy of Arabiftoday.sty (in the Arabi package), itself a slight modification of ftoday.sty in Farsi\TeX.21 Here we have renamed the command \ftoday to \Jalalitoday. Example: today is 18 Āzar 1399.

11 Auxiliary commands

The macro

\begin{verbatim}
\charifavailable{⟨char code⟩}{⟨substitution⟩}
\end{verbatim}

20The Islamic calendar is indeed a purely lunar calendar based on the observation of the first visibility of the lunar crescent at the beginning of the lunar month, so there can be differences between different localities, as well as between civil and religious authorities.

21One day we may rewrite farsical from scratch using the algorithm in Reingold & Gershowitz (ref. n. 19).
checks whether the character with the specified \texttt{⟨char code⟩} (\textit{i.e.}, unicode utf-16 code without preceding \texttt{0x}) exists in the current font. If so, the character is printed, if not, the \texttt{(substitution)} is printed.

Example: \texttt{\charifavailable{1E9E}{SS}} prints the capital version of the German letter \texttt{⟨ß⟩} if available \textit{(i.e., ß)}, else it prints the substitution digraph \texttt{SS}.

12 Accessing language information

The following is specifically relevant to package authors who need information about the languages in use. In order to get such information, \texttt{polyglossia} provides the following macros:

\begin{itemize}
 \item \texttt{\languagename} stores the currently active (polyglossia) language name.
 \item \texttt{\mainlanguagename} stores the (polyglossia) language name of the main document language.
 \item \texttt{\languagevariant} stores the language variant if set. The macro is empty if no variant has been set.
 \item \texttt{\mainlanguagevariant} stores the language variant of the main document language if set. The macro is empty if no variant has been set.
 \item \texttt{\babelname} stores the corresponding name of the currently active language (variant) in \texttt{babel}. This might not only be useful if you want to support both \texttt{babel} and \texttt{polyglossia}, but also since this name is unique for a given language variety \textit{(e.g., ngerman, german, swissgerman etc.)}. Note that this macro is also defined for languages that are not supported in \texttt{babel}. In that case, they are equal to the polyglossia language name.
 \item \texttt{\mainbabelname} analogously stores the name of document’s main language (variant) in \texttt{babel}.
 \item \texttt{\languageid{⟨type⟩}} \texttt{←} stores the identifier tag of the current language. Currently supported \texttt{(types)}:
 \begin{itemize}
 \item \texttt{bcp-47} (alias \texttt{bcp47}): IETF BCP-47 language identifier
 \end{itemize}
 \item \texttt{\mainlanguageid{⟨type⟩}} \texttt{←} stores identifier tag of the main language. Currently supported \texttt{(types)}: \texttt{see \languageid}.
\end{itemize}

If you want to have a full list of loaded languages/variants, use the following macros:

\begin{itemize}
 \item \texttt{\xpg@loaded} stores a comma-separated list of all loaded languages (polyglossia name)
 \item \texttt{\xpg@vloaded} stores a comma-separated list of all loaded variants
 \item \texttt{\xpg@bloaded} stores a comma-separated list of \texttt{babel} names of all language
\end{itemize}
variants

\xpg@bcp@loaded \v1.47

\xpg@bcp@loaded ← stores a comma-separated list of the BCP-47 IDs of all language variants

Whether a language is loaded can be tested by

\iflanguageloaded\{\{true\}\}\{\{false\}\}\{\{lang\}\} \v1.47

where \{\{lang\}\} is a polyglossia language name, by

\ifbabellanguageloaded\{\{true\}\}\{\{false\}\}\{\{lang\}\} \v1.47

where \{\{lang\}\} is a babel language name (see table 2 on p. 5), or by

\iflanguageidloaded\{\{true\}\}\{\{false\}\}\{\{type\}\}\{\{id\}\} \v1.47

where \{\{type\}\} is a supported language id type (such as bcp-47) and \{\{id\}\} is a language id (such as en-US; see table 3 on p. 6).

Finally, if you want to know whether a specific language option has been set, you can use

\iflanguageoption\{\{true\}\}\{\{false\}\}\{\{opt. key\}\}\{\{opt. value\}\} \v1.47

13 Acknowledgements (by François Charette)

Polyglossia is notable for being a recycle box of previous contributions by other people. I take this opportunity to thank the following individuals, whose splendid work has made my task almost trivial in comparision: Johannes Braams and the numerous contributors to the babel package (in particular Boris Lavva and others for its Hebrew support), Alexej Kryukov (antomega), Will Robertson (fontspec), Apostolos Syropoulos (xgreek), Youssef Jabri (arabi), and Vafa Khalighi (xepersian and bidi). The work of Mojca Miklavec and Arthur Reutenauer on hyphenation patterns with their package hyph-utf8 is of course invaluable. I should also thank other individuals for their assistance in supporting specific languages: Yves Codet (Sanskrit), Zdenĕk Wagner (Hindi), Mikhail Oren (Hebrew), Sergey Astanin (Russian), Sertaç Ö. Yildiz (Turkish), Kamal Abdali (Urdu), and several other members of the \texttt{Xe\LaTeX} user community, notably Enrico Gregorio, who has sent me many useful suggestions and corrections and contributed the \texttt{\newXeTeXintercharclass} mechanism in xelatex.ini which is now used by polyglossia. More recently, Kevin Godby of the Ubuntu Manual project has contributed very useful feedback, bug hunting and, with the help of translators, new language definition files for Asturian, Lithuanian, Occitan, Bengali, Malayalam, Marathi, Tamil, and Telugu. It

53
is particularly heartening to realize that this package is used to typeset a widely-read document in dozens of different languages! Support for Lao was also added thanks to Brian Wilson. I also thank Alan Munn for kindly proof-reading the penultimate version of this documentation. And of course my gratitude also goes to Jonathan Kew, the formidable author of XeřeX!

14 More acknowledgements (by the current development team)

Many thanks to all the people who have contributed bugfixes and new features to polyglossia since we took over. In alphabetical order: Ignas Anikevicius, Sina Ahmadi, Wouter Bolsterlee, Christian Buhtz, Zgarbul Andrey, Oleg DomanoV, Philipp Gesang, Kevin Godby, Enrico Gregorio, Khaled Hosny, Najib Idrissi, user julyron67, Dohyun Kim, Phil Kime, Mike Kroutikov, Ivan Kovan, Caleb Maclellan, José Mancera, Miquel Ortega, Yevgen Pogribnyi, Will Robertson, Maīeul Rouquette, Elie Roux, Hugo Roy, Guy Rutenberg, Philipp Stephani, Niranj Tambe, Keno Wehr, Dominik Wujastyk, Sertaç Ö. Yıldız, Maksim Zhouludev, Yan Zhou, and Stefan Zlatinov. Their respective contributions can be identified from the contributor statistics on GitHub.

Among the ones who sent contributions directly to us we would like to especially thank Claudio Beccari, the indefatigable champion of Romance languages, and beyond! Furthermore, kudos go to Moritz Wemheuer (of biblatex) who has helped a lot to improve polyglossia interaction with biblatex and csquotes.

Not at least, we are very grateful for all bug reports and feature enhancement requests we received from the numerous users we cannot list all here (but again, you can find all names on GitHub). Please go on with that, you are keeping polyglossia running!