
Logical markup for mathematical lists

Will Robertson

2008/08/15 v0.6a

Contents

1 Introduction 2

2 Basic Functionality 2
2.1 Prototypical example: vector

notation 2

2.2 Matrix notation 2

2.3 Function and ‘set’ notation 3

2.4 Non-specific commands 3

2.5 An example of some actual
maths 4

2.6 Elements and indexing 4

2.7 Shorthand indices and
empty elements 5

2.8 \dots 6

3 Generalisation 6
3.1 Head and element formatting 7

3.2 Head prefixing 7

3.3 Delimiter formatting 8

3.4 Separator formatting 9

3.5 Global options definition 10

3.6 Redefining \vect, \matr,
\func, \mset 10

4 TODO 10

5 The default definitions 11
5.1 Global options 11

5.2 Provided mlists 11

6 Prior art 12

I mlist implementation 15

7 Setup code 15
7.1 User shorthands 15

7.2 Packages 16

7.3 Code we need 16

8 keyval options 17
8.1 Wrapping 18

8.2 Element definition 18

8.3 Shorthand definitions 19

9 List indexing 19

10 List creation 23

1

1 Introduction

One of LATEX’s lauded features is its separation of form and content. When writ-
ing a document, they say, you can just focus on the words. Well, that may be
well and good for prose, but mathematicians have frequently been left out in the
cold. A funny situation, considering LATEX’s main audience.

Recently, the cool package appeared, marking the first large-scale format-
independent method of writing maths in LATEX. Need to change the brackets
surrounding the arguments of \sin and \cos, or switch from tan−1 to arctan
throughout an entire document? No worries.

This sort of initiative will allow much easier transfer of mathematics from
such software packages as Mathematica and Matlab, if it becomes popular
enough.

This package, mlist, provides a method to write various sorts of mathemat-
ical lists without having to worry about formatting. When I say ‘lists’, I mean
things like A = (A1, A2, A3); to me as a mechanical engineer, vectors and matri-
ces; but the package is more general than that, I hope.

You can use mlist straight away with
\usepackage{mlist}

and
$\vect{A}=\vect{A}{1,2,3}$

to get the example in the previous paragraph, but please keep reading to learn
its more useful features.

2 Basic Functionality

2.1 Prototypical example: vector notation

This example demonstrates why I wrote this package. The control sequence\newvect

\dist is defined as a vector with any number of elements. The vector and its
elements can be subsequently referred to without hard-coding any of the math-
ematical symbols or brackets used.

D Dφ

(
Dr, Dφ, Dθ

) \newvect\dist{D}[elem={r,\phi,\theta}]

\[\dist \qquad \dist{2}

\qquad \dist{1,2,3} \]

2.2 Matrix notation

The basic idea of this package is to separate the formatting and content of math-
ematical objects. The above example showed vector notation, and there are three
more ‘data structures’ that are defined ‘out of the box’.

2

The second example is for matrices, which one might consider quite similar\newmatr

to vectors; but by default the formatting internally uses amsmath’s {bmatrix}
environment. Note that it’s a very good idea to give your maths objects actual
names rather than shorthands like \M—who knows if you’ll still be calling it ‘M’
in ten years time?

M m + M
[

m 0
0 m + M

] \newmatr\massm{M}[elem={m,0;0,m+M}]

\[\massm \qquad \massm{4}

\qquad \massm{1,2;3,4} \]

Again, it is possible then to change the brackets used for matrices through-
out an entire document (or collection of documents) without changing the fun-
damental markup of the mathematics itself.

2.3 Function and ‘set’ notation

Finally, here’s something a little different. Vector and matrices are both quite\newfunc

similar. But it takes only a slight stretch to extend the syntax of this package to
things completely different—such as functions:

T (x0; x, t) T (x) T (x, t)
\newfunc\traj{T}[elem={x_0;x,t},index={1;2,3}]

\[\traj \qquad \traj{2} \qquad \traj{2,3} \]

For example, Mathematica users may wish to typeset their arguments with
square brackets in their own documents but not for published papers. To ham-
mer home the point: this can be now done for an entire document with a simple
switch.

Here’s an example to further demonstrate the flexibility of the package.\newmset

T T2 T2×3
\newmset\setT{T}

\[\setT \qquad \setT{2} \qquad \setT{2,3} \]

The \setR, \setC, \setN, and \setZ ‘msets’ are defined by default for real, com-
plex, natural, and integer numbers.

x ∈ R2×2 \[\bm{x}\in\setR{2,2} \]

2.4 Non-specific commands

Sometimes you don’t always want to define new macros for one-off maths
expressions. Accompanying the \newvect, \newmatr, \newfunc, and \newmset

3

macros are \vect, \matr, \func, and \mset, which can be used for single cases:

(Va, Vb, Vc)
[

a b
c d

]
f (x0; x, t) Dm×n

\[\vect{V}{a,b,c} \quad

\matr{M}{a,b;c,d} \quad

\func{f}{x_0;x,t} \quad

\mset{D}{m,n} \]

This usage is generally not recommended except in isolated cases.

2.5 An example of some actual maths

Here’s a practical example using \matr that I think demonstrates well the ad-
vantages of using this package:

ẋ = Ax

x =
[

x1
ẋ1

]

A =
[

0 1
−K/M −C/M

]
∂

∂t

[
x1
ẋ1

]
=

[
0 1

−K/M −C/M

] [
x1
ẋ1

]

\newmatr\state{x}

[elem={x_1;\dot x_1},index={1;2}]

\newmatr\dyn{A}

[elem={0,1;-K/M,-C/M},

index={1,2;3,4}]

\[\dot{\state{}} = \dyn{}\state{} \]

\[\state{} = \state \]

\[\dyn{} = \dyn \]

\[\frac\partial{\partial t}

\state = \dyn \state \]

There’s a lot more semantic meaning in that mathematical TEX source than if it
were hard-coded without this package.

2.6 Elements and indexing

For context for the following explanations, here’s our first example again:

D Dφ

(
Dr, Dφ, Dθ

) \newvect\dist{D}[elem={r,\phi,\theta}]

\[\dist \qquad \dist{2} \qquad \dist{1,2,3} \]

Each command created like \dist takes zero or one arguments, as shown
above. Unlike regular LATEX commands with optional arguments, these still use
curly braces, and an empty argument is equivalent (by default) to omitting the
argument altogether:

\dist{}→ D ≡ \dist→ D .
While numerical indexing is used to extract elem items from the list, any

argument can be used instead that is passed through directly:
\dist{x^2}→ Dx2 .

4

Table 1: How two-dimension lists elements are indexed. The first row shows the
input list via elem={}. The second and third rows respectively show the direct
index and implicit index required to reference the elements of the list.

List { a , b , c ; d , e ; f }
Direct index { 1 , 2 , 3 ; 4 , 5 ; 6 }
Implicit index { @1 , @2 , @3 ; @1 , @2 ; @1 }

As we saw for the matrix examples, the input may actually be ‘two-
dimensional’; as well as being comma-separated, elements (and sets of elements)
may also be separated by semi-colons:

\dist{x;y;z}→
(

Dx; Dy; Dz
)

.
Input elements can also be specified with semi-colon separators to match up

with two-dimensional element indexing. There are two ways to reference these
elements: with a linear index from one to the number of elements in elem; or
with ‘implicit indexing’ that starts from one for every semi-colon list. Implicit
indices are prefix with the @ symbol.1 An example is useful to show how this
works:

V =
(
Va, Vb, Vc; Vx, Vy, Vz

)
V =

(
Vx, Vy, Vz

)
V =

(
Va, Vb, Vc; Vx, Vy, Vz

)
\newvect\V{V}[elem={a,b,c;x,y,z}]

\[\V=\V{1,2,3;4,5,6} \]

\[\V=\V{4,5,6} \]

\[\V=\V{1,2,3;@1,@2,@3} \]

See table 1 for a more detailed example of the indexing system.
You can also set the default element list when defining a vector. In this case,

an empty list argument is not equivalent to omitting one:

(
Li, Lj, Lk

)
vs. L vs.

(
Li, Lj

) \newvect\LL{L}[elem={i,j,k},index={1,2,3}]

\LL \quad vs.\quad $\LL{}$

\quad vs.\quad $\LL{1,2} $

This was shown originally in the function example on page 3.

2.7 Shorthand indices and empty elements

Shorthands are defined to allow things that aren’t elements into the list. In this
example, the semi-colon separation is shown with the \dots shorthand ‘:’ and
the \cdot shorthand ‘.’.

1The implicit indexing syntax will work even if \makeatletter is in effect.

5

M = (M1, M2, . . . , M5; Ma, Mb, · , Md)
\newvect\mm{M}

\[\mm=\mm{1,2,:,5;a,b,.,d} \]

More shorthands will be defined in the future via an extensible mechanism
that does not yet exist.

Empty arguments are ignored (where ‘empty’ ≡ empty or whitespace).

N = (N1, N3, N5; N2)
\newvect\nset{N}

\[\nset=\nset{1,,,3, ,5;;,2,;} \]

2.8 \dots

Finally, some macros are defined in order to be able to typeset unknown ranges
(1, 2, . . . , N) without hard-coding the symbol of the maximum element. Similarly,
it is also useful to denote a ‘mid-range’ element somewhere inside the ellipses.
Note the equivalence in defining the mid and last elements and indexing them.

W =
(
Wi, Wj, . . . , Ww−1, Ww

)
Y =

(
Yi, Yj, . . . , Yp, . . . , Yy

)
\newvect\W{W}[elem={i,j,k,:,w}]

\newvect\Y{Y}[elem={i,j,k,:,p,:,y}]

\[\W=\W{1,2,:,\LAST-1,\LAST} \]

\[\Y=\Y{1,2,:,\MID,:,\LAST} \]

The \MID and \LAST control sequences are ‘implicit’ for two dimensional lists:

(Xi, . . . , Xm, . . . , Xw; Xii, . . . , Xmm, . . . , Xww)(
Xi, Xj, Xk; Xii, Xjj, Xkk

)
\newvect\X{X}[%

elem={i,j,k,:,m,:,w;ii,jj,kk,:,mm,:,ww}]

\[\X{1,:,\MID,:,\LAST;@1,:,\MID,:,\LAST} \]

\[\X{1,2,3;4,5,6} \]

Finally, note well above that any {:,X} pairs for mid/last element defini-
tions do not add to the direct index numbering.

3 Generalisation

The \newvect command that has been often shown previously is an example\newmlist

\renewmlist of a macro created with \newmlist, which can be considered something like an
instance generator for the types of lists we’re dealing with. Use \renewmlist if
the command is already in use.

\newmlist\<list>[〈list options〉] creates macros \<list> and \new<list>
(and \renew<list>) that are analogous to \vect and \newvect seen in section §2.

6

〈list options〉 can contain any of those seen so far in previous \newvect macros,
plus more to be introduced soon.

In the examples to follow, \vect and \newvect are often still used to demon-
strate various options, overriding the defaults.

3.1 Head and element formatting

The headcmd and elemcmd options are used to alter the formatting of the vector
symbol and its elements. They are passed macros that take, respectively, one and
two arguments that define the formatting.

For \vect, headcmd=\mathbf and elemcmd=\mlistsub, where
\mlistsub{#1}{#2}→ #1_{#2}.

\mlistsup, the analogous command for creating superscripts, is defined by the
package in case you need it.

In this example, the vector symbol is formatted with an arrow accent, and
the elements are exactly as specified in elem.

~A (a, b, c, d) c

\newvect\A{A}[%

headcmd=\vec,

elemcmd=\mlistelem,

elem={a,b,c,d}]

\[\A \qquad \A{1,2,3,4} \qquad \A{3} \]

The \mlistelem command (with its friend, \mlisthead) is defined as fol-
lows:

\mlistelem{#1}{#2}→ #2
\mlisthead{#1}→ #1

In section §2.6, we saw that list indexing doesn’t have to be numerical. In
this example, the use of \@alph allows alphabetic subscripts but non-numeric
indices will produce errors:

(Aa, Ab, Ac, Ad) Ac

\makeatletter

\newcommand\subalph[2]{#1_{\@alph{#2}}}

\makeatother

\newvect\A{A}[%

elemcmd=\subalph]

\[\A{1,2,3,4} \qquad \A{3} \]

3.2 Head prefixing

Applying (things like) accents to mlists will often give the wrong result:

7

A (1) ¯A (1)
\newfunc\A{A}

$\A{1}$ \qquad $\bar{\A{1}}$

The solution for this involves defining a prefix for the head element with
the headhook option:

A (1) Ā (1)

\newfunc\A{A}

\newcommand\baraccent[1]{%

{\mlistsetup{headhook=\bar}#1}}

$\A{1}$ \qquad $\baraccent{\A{1}}$

This method can also be used to apply postfix elements as well:

A (1) A (1)′ A′ (1)

\newfunc\A{A}

\newcommand\postprime[1]{#1’}

\newcommand\primeaccent[1]{%

{\mlistsetup{headhook=\postprime}#1}}

$\A{1}$ \qquad $\A{1}’$ \qquad $\primeaccent{\A{1}}$

The user interface for these features is rather rough and needs more
thought; it might be better if \mlistsetup did not need to be called in the accent
definition.

For these reasons the headhook feature should be considered a little ex-
perimental and possibly subject to change in the future. It should certainly be
accompanied by a variety of ‘\baraccent’–like commands, unless \bar can be
patched to recognise such situations automatically (this seems unlikely).

3.3 Delimiter formatting

The wrap and wrapone options are used to change the way elements are dis-
played together. Each take two arguments to define the opening and closing
material.

By default, if there is more than one element, it is surrounded by square
brackets: wrap=[]. A single element is typeset naked: wrapone={}{}. If wrapone
is called with no ‘=’ argument, it takes the same value as wrap.

In this example, the brackets around the sets are changed to parentheses,
including single elements. The behaviour for a single element is then changed
to use angle brackets:

8

Q + Q1 + (Qa, Qb)

Q + (Q1) + (Qa, Qb)

Q + 〈Q1〉+ (Qa, Qb)

\newvect\Q{Q}

$\Q + \Q{1} + \Q{a,b}$

\newvect\QQ{Q}[wrap=(),wrapone]

$\QQ + \QQ{1} + \QQ{a,b}$

\newvect\QQQ{Q}[wrapone={\left<}{\right>}]

$\QQQ + \QQQ{1} + \QQQ{a,b}$

Rather than defining the open/close material around a set of elements, it
can often be necessary to define a macro that defines the formatting of the set.
The wrapcmd and wraponecmd options are used for this purpose, and take as
argument a single macro that accepts two arguments: the list head and the list
elements, respectively.

R + R1 + (Ra, Rb)

R + 〈R1〉R + 〈Ra, Rb〉R
R + {R1}R + 〈Ra, Rb〉R

\newvect\R{R}

$\R + \R{1} + \R{a,b}$

\newcommand\mywrap[2]{\langle{\color{red}#2}\rangle_{#1}}

\newvect\RR{R}[wrapcmd=\mywrap,wraponecmd]

$\RR + \RR{1} + \RR{a,b}$

\newcommand\mywrapone[2]{\{{\color{green}#2}\}^{#1}}

\newvect\RRR{R}[

wrapcmd=\mywrap,

wraponecmd=\mywrapone]

$\RRR + \RRR{1} + \RRR{a,b}$

mlist provides some example commands for this purpose:
\mlistnowrap → #2
\mlistparen → \left (#2\right)
\mlistbrack → \left [#2\right]
\mlistbrace → \left \{#2\right \}
\mlistangle → \left <#2\right >
\mlistheadparen → #1\left (#2\right)
\mlistheadbrack → #1\left [#2\right]
\mlistheadbrace → #1\left \{#2\right \}
\mlistheadangle → #1\left <#2\right >

3.4 Separator formatting

The sep and sepsep options take one argument that is inserted between items
in comma and semi-colon lists, respectively. For example, in the \matr list these
are defined with [sep=&, sepsep=\\].

9

Here’s another example:

Sa + Sb + Sc + Sd + · · ·+ Sp + Sq + Sr + Ss + · · ·+
Sx + Sy + Sz

\newvect\mysum{S}[

sep=+,

wrap={}{},

dots=\cdots]

$\mysum{a,b,c,d,:,p,q,r,s,:,x,y,z}$

3.5 Global options definition

If options aren’t specified in \newmlist they are inherited from the global de-\mlistsetup

faults, which may be adjusted with \mlistsetup{〈mlist options〉}. The defaults
are shown in section §5 on the following page.

3.6 Redefining \vect, \matr, \func, \mset

This package makes little claim for being imminently usable for most people out
of the box. I figure there’s just too much variety; people need to define their own
‘mlists’ with \newmlist.

If changes to the mlists provided by default with this package are required
(as they will be if any aspect of their formatting needs to be adjusted), simply
create a local mlist.cfg file with different defintions or even just copy them
from section §5 on the next page in a \renewmlist.

4 TODO

• changing features of (or adding features to, rather) ‘newvect’ constructions,
rather than overwriting them.

• generalise escaping strings like :→\dots, etc.

• accents and appended/prepended material migrating inside the head
(and/or each element) argument.

• optional arguments for \MID and \LAST (for explicit indexing).

• coercing one type of list into another (and retrieving non-wrapped lists as
a special case)

• use ltx3!

10

5 The default definitions

This is the code that appears in the default configuration file mlist.cfg to set up
the default options and mlists. Edit a copy of mlist.cfg in a local location (in a
local texmf tree or on a per-document basis) to change these definitions and to
create your own mlists.

5.1 Global options

These are inherited by mlists that do not explicitly define their own respective
options. Geared towards \vect, essentially.
1 \mlistsetup{%

2 sep={,},

3 sepsep={;},

4 wrapcmd=\mlistparen,

5 wrapone={}{},

6 dots=\dots,

7 dot={\,\cdot\,},

8 elemcmd=\mlistelem,

9 headcmd=\mathbf,

10 index={},

11 headhook={},

12 }

5.2 Provided mlists

Redefine these with \renewmlist to effect your own formatting of these mlists.
Note that these assume certain global defaults (see above), so some aspects of
their formatting can be changed with \mlistsetup.

\vect By default \vect{V}=\vect{V}{a,b,c}→ V = (Va, Vb, Vc).
13 \newmlist\vect[

14 wrapcmd=\mlistparen,

15 wraponecmd=\mlistnowrap,

16 elemcmd=\mlistsub,

17 headcmd=\mathbf,

18]

\matr By default \matr{M}=\matr{M}{a,b;c,d}→ M =
[

a b
c d

]
.

19 \newmlist\matr[

20 sep=&,

21 sepsep=\\,

22 wrap={\begin{bmatrix}}

23 {\end{bmatrix}},

24]

11

\func By default, \func{f}=\func{f}{x,y,z}→ f = f (x, y, z).
25 \newmlist\func[

26 headcmd=\mlisthead,

27 wrapcmd=\mlistheadparen,

28 wraponecmd,

29]

\mset By default, \mset{N}{2,3}→ N2×3.
30 \newmlist\mset[

31 headcmd=\mathbb,

32 sep=\times,

33 wrapcmd=\mlistsup,

34 wraponecmd,

35]

Sets for real, complex, natural, and integer numbers, respectively:
36 \newmset\setR{R}

37 \newmset\setC{C}

38 \newmset\setN{N}

39 \newmset\setZ{Z}

6 Prior art

With ctan getting so big these days, it’s quite necessary to undertake extensive
literature reviews before writing your own package. I’ve been burned before,
spending a couple of days playing with ideas and then realising that someone’s
already done what I wanted. This time I looked before I jumped.

easyvector The most similar package to this one (that I could find) is easyvec-

tor.2 Superficially, there are a number of similarities, but it didn’t quite do what
I wanted. Here’s an example demonstrating the creation of new vector macros:

Z = (Zk
i,j) Z1,2,3 6= Z1,2,3

\newvector[Z,\mathbf{Z}]{X}

\[\X = (\X[i,j;k]) \qquad

\X[1,2,3] \neq \X![1,2,3] \]

Note that each macro refers only to a single vector element. This is a package
to simplify input (and abstract formatting) of vectors with complex notation.
easyvector also allows you to customise the form of the vectors it produces, but
this is rather inflexible without a good deal of work.

2http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=easyvector

12

\bvec \buvec \svec \suvec \uvec \uuvec \irvec
a â a â a â a1, . . . , an

Table 2: Commands defined by the vector package. \uvec and \uuvec can be con-
figured to produce an under-tilde instead. \irvec takes an optional argument
for ‘n’ and can be configured (globally) to begin from a different index.

b b3
12

b1
32

\def\myindex[#1,#2,#3]{_{#1_{#2}}^{#3}}

\newcustomvector[\mathtt{b},\mathbf{b}]{bb}\myindex

\[\bb \qquad \bb[1,2,3] \qquad \bb[3,2,1] \]

Note also that the main symbol (‘b’, here) is not available even in this case,
so prepended sub-/superscripts are not possible.

Has the interesting option to reference matrix row/column sub-vectors:
(careful to ensure \makeatother manually)

W = (W•,j) W•a,b

\newvector(W)[wvec]

\[\wvec = (\wvec[@,j]) \qquad \wvec[a,b;@] \]

I like this idea of ‘shorthand’ symbols.

vector The package vector3 provides a few commands for setting vector and
matrix symbols, shown in table 2. Just a few basic macros to simplify input, but
not really to separate form and content.

vector provided the inspiration to add \dots ideas to this package. It also
highlights that something specific should be done with accents in general and
provide a content macro for unit vectors.

hhtensor The hhtensor package4 provides a few content-based macros with
global options to specify their appearance. \vec, \matr and \tens are provided
for vectors, matrices, and tensors, with mathematical symbols \dcdot to denote
double scalar products, and \trans for printing an upright superscript ‘T’ to
denote the transpose operator.

This package was the inspiration for pre-defined macros for specific mean-
ings. While I approve of defining the transpose symbol, it’s outside the scope of
mlist.

3http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=vector
4http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=hhtensor

13

Other tensor packages There are three main packages for typesetting tensors.
These start to stray from the interest of mlist. The relevant packages are tensind,5

tensor,6 and mattens.7 Each focuses on typesetting various forms of tensor nota-
tion, which differ from what this package is trying to do. Integration between
this package and those three above are possible, but has not yet been investi-
gated.

5http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=tensind
6http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=tensor
7http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=mattens

14

File I

mlist implementation

7 Setup code

This is the package.

1 \ProvidesPackage{mlist}

2 [2008/08/15 v0.6a Typesetting maths lists]

Change History
v0.1

General: Code tidy up; first decent version. 15

v0.2
General: More documentation; list indexing not finalised. 15

v0.3
General: List indexing decided; empty arguments ignored. 15

Tidied up the \MID/\LAST element stuff a bit. 19

v0.4
\@mlist: Eliminated \global no longer required since I separated the list

creation and typesetting. 22

Simplified ‘single index’ code. 22

General: Tidied things up a little bit. 15

\mlist@optarg: Implemented to simplify optional arg processing. 17

v0.5
\@mlist: Added \mlist@headcmd command to the \mlist@symbolinside

\mlist@wrap (fixed bug with \mset) 22

\mset: Added. 12

v0.6
\@mlist: Added \mlist@headhook. 22

v0.6a
\mlist@optarg: Renamed to avoid clashing with breqn’s command of the

same name. 17

7.1 User shorthands

For headcmd:
3 \let\mlisthead\@firstofone

For elemcmd:
4 \let\mlistelem\@secondoftwo

5 \newcommand\mlistsub [2]{#1_{#2}}

6 \newcommand\mlistsup [2]{#1^{#2}}

15

For wrapcmd:
7 \let\mlistnowrap\@secondoftwo

8 \newcommand\mlistparen[2]{\left(#2\right)}

9 \newcommand\mlistbrack[2]{\left[#2\right]}

10 \newcommand\mlistbrace[2]{\left\{#2\right\}}

11 \newcommand\mlistangle[2]{\left<#2\right>}

12 \newcommand\mlistheadparen[2]{#1\left(#2\right)}

13 \newcommand\mlistheadbrack[2]{#1\left[#2\right]}

14 \newcommand\mlistheadbrace[2]{#1\left\{#2\right\}}

15 \newcommand\mlistheadangle[2]{#1\left<#2\right>}

7.2 Packages

16 \RequirePackage{xkeyval,ifmtarg}

7.3 Code we need

Conditionals and counters and things:
17 \newif\if@mlist@notfirst@

18 \newif\if@mlist@implicit@

19 \newcount\mlist@elem@N

20 \def\@gobblenil#1\@nil{}

Some specific things:
21 \newif\if@mlist@warn

Semi-colon delimited iteration (adapted from ltx2e).
22 \long\def\@sfor#1:=#2\do#3{%

23 \expandafter\def\expandafter\@sfortmp\expandafter{#2}%

24 \ifx\@sfortmp\@empty\else

25 \expandafter\@sforloop#2;\@nil;\@nil\@@#1{#3}%

26 \fi}

27 \long\def\@sforloop#1;#2;#3\@@#4#5{%

28 \def#4{#1}%

29 \ifx #4\@nnil \else

30 #5%

31 \def#4{#2}%

32 \ifx #4\@nnil \else

33 #5%

34 \@siforloop #3\@@#4{#5}%

35 \fi

36 \fi}

37 \long\def\@siforloop#1;#2\@@#3#4{%

38 \def#3{#1}%

39 \ifx #3\@nnil

40 \expandafter\@fornoop

41 \else

16

42 #4\relax\expandafter\@siforloop

43 \fi

44 #2\@@#3{#4}}

ltx3-inspired syntax. \def@c still needs arguments to be supplied to it.
45 \providecommand\let@cc[2]{%

46 \expandafter\let\csname#1\expandafter\endcsname\csname#2\endcsname}

47 \providecommand\def@c[1]{%

48 \expandafter\def\csname#1\endcsname}

49 \providecommand\def@co[2]{%

50 \def@c{#1\expandafter}\expandafter{#2}}

\mlist@optarg Macro to simplify optional argument parsing.
51 \newcommand\mlist@optarg[1]{\@ifnextchar[{#1}{#1[]}}%]

Shorthand to test for optional brace arguments:
52 \newcommand\@ifnextbrace{\expandafter\@ifnextchar\bgroup}

Shorthand string definitions for ifx tests:
53 \def\mlist@colon{:}

54 \def\mlist@period{.}

This is for checking for @ with an ‘other’ catcode:
55 \makeatother

56 \expandafter\def\csname mlist@ampersat\endcsname{@}

57 \makeatletter

(‘Ampersat’ is a name for @ I find amusing. That symbol doesn’t seem to have a
definitive official name.)

8 keyval options

\mlistsetup #1 : keyval options
User command to set global defaults for mlists.
58 \newcommand\mlistsetup[1]{\setkeys[mlist]{sym}{#1}}

xkeyval makes it easy for us to define a whole slew of options that simply
save their argument to a macro.
59 \define@cmdkeys[mlist]{sym}[mlist@]{%

60 symbol,index,sep,sepsep,elem,

61 elemcmd,headcmd,dot,dots,headhook}

17

8.1 Wrapping

The wrapcmd options also just save their argument, but wraponecmd takes
wrapcmd as a default:
62 \define@key[mlist]{sym}{wrapcmd}{\let\mlist@wrap#1}

63 \define@key[mlist]{sym}{wraponecmd}[\mlist@wrap]{\let\mlist@wrapone#1}

The wrap and wrapone options need a bit more logic in them:
64 \define@key[mlist]{sym}{wrap}{%

65 \def\mlist@wrap##1##2{\@firstoftwo#1##2\@secondoftwo#1}}

66 \define@key[mlist]{sym}{wrapone}[]{%

67 \ifx\relax#1\relax

68 \let\mlist@wrapone\mlist@wrap

69 \else

70 \def\mlist@wrapone##1##2{\@firstoftwo#1##2\@secondoftwo#1}%

71 \fi}

8.2 Element definition

Takes as input a two dimension list with comma-separated elements and
semicolon-separated lists of elements:

#1→ {1,2,3;4,5;6} .
Elements could be numerical or arbitrary TEX code.

72 \define@key[mlist]{sym}{elem}{%

It would be easier for all involved if I used specific counters for the following.
For now, they’re generic and harder to comprehend in six months:
\@tempcnta Number of semicolon list.
\@tempcntb Element number of this comma list.

73 \@tempcnta\z@

74 \@tempcntb\z@

75 \mlist@elem@N\z@

Iterate over every semicolon list. Set \if@tempswa true only after every : ele-
ment, for each semicolon list. Maybe we should use a counter for this, instead?
76 \@sfor\@jj:=#1\do{%

77 \advance\@tempcnta\@ne

78 \@tempcntb\z@

79 \@tempswafalse

Iterate over every comma list:
80 \@for\@ii:=\@jj\do{%

If the element is :, set the switch for the next comma-iteration.
81 \ifx\@ii\mlist@colon

82 \@tempswatrue

83 \else

18

If the previous element was :, save the ‘last’ element: (TODO: add error check
for too many :). If we’ve already defined the ‘last’ element and run into : again,
that means we actually wanted ‘mid’ so make the redefinition. This should only
happen once anyway so it can occur every time \if@tempswa is true.
84 \if@tempswa

85 \let@cc{mlist@\the\@tempcnta @mid}{mlist@\the\@tempcnta @last}%

86 \def\@tempa{\def@c{mlist@\the\@tempcnta @last}}%

87 \expandafter\@tempa\expandafter{\@ii}%

88 \else

Otherwise, bump up the counters and define the elements. There are two defi-
nitions we used for the element indexing. As an example, if we’re up to index
(3, 1) of a list like {a, b, c; d, e; f } then we define

\mlist@3@1→ elem f , and
\mlist@@6→ elem f .

(Index 3, 1 is the sixth in the list.)
89 \advance\@tempcntb\@ne

90 \advance\mlist@elem@N\@ne

91 \def@co{mlist@\the\@tempcnta @\the\@tempcntb}{\@ii}%

92 \def@co{mlist@@\the\mlist@elem@N}{\@ii}%

93 \fi

94 \fi}%

If swa is true, we are in an element after a :, so turn it off. TODO: I guess no
more regular elements can turn up anyway so this is probably overkill!
95 \if@tempswa\@tempswafalse\fi}}

8.3 Shorthand definitions

Currently defunct:
96 \define@key[mlist]{sym}{shorthand}{%

97 \mlist@def@shorthand#1%

98 \def@c{mlist@@\@tempa\expandafter}\expandafter{\@tempb}}

99 \def\mlist@def@shorthand#1#{%

100 \def\@tempa{\string#1}

101 \def\@tempb}

9 List indexing

How do I want indexing to work? Originally, the input was a one dimensional
list with the output directly following the indexing:

A = {a1,a2,a3,a4}

A{1,2;3,4} == {a1,a2;a3,a4}

19

I tried a couple of other things, but went back to this idea plus the implicit
indexing.

\@mlist #1 : keyval options
This is the \setkeys wrapper, which sets macros for us in various ways depend-
ing on how it has been called and then moves on to do the actual list indexing,
extraction, and typesetting.

102 \newcommand\@mlist[1]{%

103 \begingroup

104 \let\mlist@list@elems\@empty

105 \@tempcnta\@ne

106 \mlist@count

The \setkeys code to extract our mlist is flanked by some scary code to protect
ourselves inside things like {array} environments. Thanks Morten.

107 \iffalse{\fi\ifnum0=‘}\fi

108 \setkeys[mlist]{sym}{#1}%

109 \ifnum0=‘{\fi\iffalse}\fi

These macros only exist inside an mlist index:
110 \def\MID{\csname mlist@\the\@tempcnta @mid\endcsname}%

111 \def\LAST{\csname mlist@\the\@tempcnta @last\endcsname}%

If there are no optional arguments, typeset the plain vector symbol.
112 \ifx\@empty\mlist@index\relax

113 \def\mlist@list{\mlist@headcmd{\mlist@headhook\mlist@symbol}}%

114 \else

Otherwise, iterate over every semicolon-separated list.
115 \@tempcnta\z@

116 \@tempswafalse

117 \@sfor\@jj:=\mlist@index\do{%

118 \let\@jj\@jj

119 \advance\@tempcnta\@ne

120 \mlist@count

121 \expandafter\@ifmtarg\expandafter{\@jj}{}% ignore if empty

122 {\if@tempswa\mlist@add\mlist@sepsep\fi

123 \@tempswatrue}%

And (sub-)iterate over every comma-separated list:
124 \@tempcntb\z@

125 \@mlist@notfirst@false

126 \@for\@ii:=\@jj\do{%

127 \let\@ii\@ii

128 \advance\@tempcntb\@ne

Now grab the symbol we’re up to. When it’s empty:
129 \expandafter\@ifmtarg\expandafter{\@ii}%

130 {\advance\@tempcntb\m@ne

20

131 \mlist@add{\@gobble}}

When it’s not empty:
132 {\if@mlist@notfirst@\mlist@add\mlist@sep\fi

133 \@mlist@notfirst@true

134 \ifx\@ii\mlist@colon

135 \mlist@add{\mlist@dots\@gobble}%

136 \else

137 \ifx\@ii\mlist@period

138 \mlist@add{\mlist@dot\@gobble}%

139 \else

140 \mlist@add{\mlist@elemcmd{\mlist@headhook\mlist@symbol}}%

141 \fi

142 \fi}%

Parse the index to see if it’s an implicit reference of the form @n. @mlist@implicit@
is true if the index is implicit: (and we assume @ will be only used in an implicit-
indexing context. TODO: fix this!)

143 \mlist@parse@implicit

144 \if@mlist@implicit@

145 \mlist@add@ifcs{%

146 mlist@\the\@tempcnta @\expandafter\@gobble\@ii

147 }{\@ii}%

148 \else

Because \@ii, \@jj can contain any possible index that might be passed through
the macro, we use eTeX’s \detokenize to prevent expansion of any weird argu-
ment that might be given.

149 \mlist@add@ifcs{%

150 mlist@@\expandafter\detokenize\expandafter{\@ii}%

151 }{\@ii}%

152 \fi

153 }%

That was the end of comma-separated iteration.
154 }%

That was the end of semicolon-separated iteration.
155 \def\mlist@list{%

156 \mlist@wrap{\mlist@headcmd{\mlist@headhook\mlist@symbol}}

157 {\mlist@list@elems}}%

If only have a single element:
158 \ifnum\@tempcnta=\@ne

159 \ifnum\@tempcntb=\@ne

160 \let\mlist@wrap\mlist@wrapone

161 \fi

162 \fi

163 \fi

21

164 \mlist@list

165 \endgroup}

TODO: move \mlist@list after the endgroup?

\mlist@add Used in the above to build up the \mlist@list list.
166 \newcommand\mlist@add[1]{%

167 \expandafter\gdef

168 \expandafter\mlist@list@elems

169 \expandafter{\mlist@list@elems#1}}

\mlist@count This macro is used to increment the counter used in \MID/\LAST during the
actual typesetting of the indexed elements.

170 \def\mlist@count{%

171 \expandafter\mlist@add

172 \expandafter{%

173 \expandafter\@tempcnta\the\@tempcnta\relax}}

\mlist@add@ifcs Pretty specific macro to save some repetition. Uses \mlist@add to add the first
argument as a csname if it exists, otherwise adds the literal second argument.

174 \newcommand\mlist@add@ifcs[2]{%

175 \ifcsname#1\endcsname

176 \expandafter\@firstoftwo

177 \else

178 \expandafter\@secondoftwo

179 \fi{\expandafter\mlist@add\expandafter{\expandafter{\csname#1\endcsname}}}

180 {\expandafter\mlist@add\expandafter{\expandafter{#2}}}}

\mlist@parse@implicit Parses the index to see if it’s an implicit reference: @n. The idea is to expand out
the index, set a conditional if the first char is an @, and then gobble up the whole
thing. We do this twice for the two common catcodes that @ might be.

181 \def\mlist@parse@implicit{%

182 \@mlist@implicit@false

183 \def\@tempb{%

184 \expandafter\@ifnextchar\mlist@ampersat

185 {\@mlist@implicit@true\@gobblenil}

186 {\@mlist@implicit@false\@gobblenil}}%

187 \expandafter\@tempb\@ii\@nil

188 \unless\if@mlist@implicit@

189 \def\@tempb{%

190 \@ifnextchar @

191 {\@mlist@implicit@true\@gobblenil}

192 {\@mlist@implicit@false\@gobblenil}}%

193 \expandafter\@tempb\@ii\@nil

194 \fi}

22

10 List creation

This is the idea behind the user level macros of the package:

\newmlist\vect{all-vect-opts}

\vect{v}{ind} == \@mlist{symbol={v},all-vect-opts,index={ind}}

\newvect\vv{v}[this-v-options]

\vv[ind] == \@mlist{symbol={v},all-vect-opts,this-v-options,index={ind}}

\newmlist

\renewmlist

#1 : control sequence
[〈keyval options〉] Things get pretty hairy because I have to do all the optional
argument processing manually. I’d be better off using the suffix package, but the
code works for now. ltx3 will make things much easier.

195 \newcommand\newmlist[1]{%

196 \@mlist@warntrue

197 \mlist@optarg{\@defmlist@opt{#1}}}

198 \newcommand\renewmlist[1]{%

199 \@mlist@warnfalse

200 \mlist@optarg{\@defmlist@opt{#1}}}

201 \def\@defmlist@opt#1[#2]{\@defmlist{#1}{#2}}

Processing #1 = thislist-cmd, #2 = all-thislist-opts
202 \newcommand\@defmlist[2]{%

203 \if@mlist@warn

204 \ifdefined#1

205 \PackageError{mlist}{Command \string#1 already defined}

206 {\string#1 will be overwritten}%

207 \fi

208 \fi

Plain usage: (e.g., \vect{a}{1,2,3})
209 \protected\def#1##1{%

210 \@ifnextbrace

211 {\csname\string#1@opt\endcsname{##1}}

212 {\csname\string#1@opt\endcsname{##1}{}}}%

213 \def@c{\string#1@opt}##1##2{%

214 \csname\string#1\endcsname{##1}{##2}}%

215 \def@c{\string#1}##1##2{%

216 \@mlist{symbol=##1,#2,index={##2}}}%

mlist macro definitions: (e.g., \newvect{A}[...]) Processing ##1 = this-sym-
cmd, ##2 = symbol, ##3 = this-sym-options

217 \def@c{new\expandafter\@gobble\string#1}##1##2{%

218 \@mlist@warntrue

219 \mlist@optarg{\csname @new\string#1@opt\endcsname{##1}{##2}}}%

220 \def@c{renew\expandafter\@gobble\string#1}##1##2{%

23

221 \@mlist@warnfalse

222 \mlist@optarg{\csname @new\string#1@opt\endcsname{##1}{##2}}}%

223 \def@c{@new\string#1@opt}##1##2[##3]{%

224 \csname @new\string#1\endcsname{##1}{##2}{##3}}%

225 \def@c{@new\string#1}##1##2##3{%

226 \if@mlist@warn

227 \ifdefined##1

228 \PackageError{mlist}{Command \string##1 already defined}

229 {You cannot overwrite previous definition of \string##1}%

230 \fi

231 \fi

232 \protected\def##1{%

233 \@ifnextbrace

234 {\csname @new\string##1@opt\endcsname}

235 {\@mlist{symbol=##2,#2,##3}}}%

236 \def@c{@new\string##1@opt}####1{%

237 \@mlist{symbol=##2,#2,##3,index={####1}}}}%

238 }

MLIST: symbol=S,opt1=one,

MLIST: symbol=S,opt1=one,,index=1,2,3

MLIST: symbol=T,opt1=one,opt2=two

MLIST: symbol=T,opt1=one,opt2=two,index=1,2,3

\def\@mlist#1{MLIST: #1\par}

\newmlist\testlist[opt1=one]

\newtestlist\testone{S}

\testone

\testone{1,2,3}

\newtestlist\testtwo{T}[opt2=two]

\testtwo

\testtwo{1,2,3}

239 \InputIfFileExists{mlist.cfg}{}

240 {\PackageWarning{mlist}{No configuration file (mlist.cfg) found nor loaded}}

24

