Abstract

Brandeis University’s computer science (“COSI”) courses often assign “problem sets” which require fairly rigorous formatting. The \texttt{brandeis-problemset} document class, which extends \texttt{article}, provides a simple way to typeset these problem sets in \LaTeX. Although \texttt{brandeis-problemset} is compatible with all \LaTeX flavors, Xe\LaTeX or Lua\TeX is recommended for fontspec support.

\textbf{NOTE} The \texttt{brandeis-problemset} document class should be considered experimental; the only stable API is that of the \texttt{problem} environment.

\textbf{NOTE} Browse the sources, contribute, or complain at github.com/9999years/brandeis-problemset

\textbf{NOTE} In roughly May 2021 I will graduate from Brandeis University and this package will become unmaintained. Although I’d like the computer science department to adopt this package, I’m not sure any professors have an interest in that maintenance. If you care about the extended future of this package, send some emails!

Contents

1 Default behavior
 1.1 Default packages loaded 2

2 Class configuration
 2.1 Class options .. 2
 2.2 Configuring \texttt{brandeis-problemset} after loading 4
 2.3 Practical usage .. 5

3 User commands and environments
 3.1 General formatting commands 10

4 A class and a package ... 11

5 Example ... 11

6 Changelog .. 13

* Brandeis University; rebeccaturner@brandeis.edu
1 Default behavior

brandeis-problemset provides packages and well-formatted constructs (notably the problem environment) for problem-set writers. brandeis-problemset will always render its body copy as a Times variant (stix for plain \LaTeX or xits with Xe\LaTeX or Lua\LaTeX) and always contains a useful header (which contains the page number, author’s name, course, instructor, and assignment due date).

1.1 Default packages loaded

In general, brandeis-problemset will only load a feature if it’s useful in more than one class; features like Gantt charts, Scheme code, assembly code, and so on, are loaded on demand.

1. hyperref, for a nicely-linked table of contents; \href{url}{label}.
2. geometry for page size and margins.
3. enumitem for better control over the margins and spacing of the enumerate, itemize, and description environments.
4. With any of the listings, scheme, pseudocode, or assembly options:
 (a) listings, for verbatim code listings (including the assembly, java, and pseudocode environments).
 (b) xcolor, for colored identifiers, strings, comments, and line numbers in listings; e.g. \color{gray}.
5. With the math option:
 (a) amsmath for tons of useful math commands, including \text, \intertext, and \boxed as well as the bmatrix, multiline, gather, align, and alignat environments. See “User’s Guide for the amsmath Package” for a more complete listing.
 (b) mathtools for other useful/utilitarian commands.
 (c) With Xe\LaTeX or Lua\LaTeX, unicode-math to allow equations to be copy-pasted.
 (d) The stix2-otf math fonts.
6. With the tabu option:
 (a) multirow for cells spanning multiple rows.
 (b) booktabs for beautiful-by-default tables and the \cline macro.
 (c) tabu, the best table package with dynamically resizable columns, easy creation of new column types, and more.

2 Class configuration

2.1 Class options

Class options are limited to configuration options which require the loading of fonts or other packages; “string” settings like the assignment’s due date are configured with the \bpsset command.
All class options can be negated with no(option); e.g. scheme can be disabled with noscheme. Later options override previous ones.

antonella

Only available in the brandeis-problemset document class. Use Dr. Antonella DiLillio's preferred styles (Courier for code)

tabu

Only available in the brandeis-problemset document class. Loads useful packages and defines commands for typesetting tables.

math

Only available in the brandeis-problemset document class. Loads utilities for typesetting mathematics. Because mathematics requires specialized fonts as well as several other specialized packages, this is disabled by default. Although I find myself needing mathematics fonts frequently, I know many students do not.

listings true

Enables code listings and enables default styles for colored keywords, pretty line numbers, and so on. While only this option enables the java environment, the scheme, assembly, and pseudocode options also load and style the listings package.

scheme

Enable Scheme language support, in particular for the R5RS dialect. Additionally, provides the scheme environment.

pseudocode

Enables the pseudocode environment, notably useful for COSI 21b (data structures).

assembly

Enables the assembly environment, notably useful for COSI 131a (operating systems).

solution

Show the content of solution environments; by default, they are excluded from compilation using the comment package.

gantt

Loads the gantt schedule environment.

maketitle true

Redefines \maketitle and defines \maketitlepage to include information about the course, instructor, assignment, and due date. If maketitle is set, then option is automatically enabled..

header true

Adds a header to the top of every page including information about the author, assignment, due date, and instructor. If header is set, then option is automatically enabled.

1The STIX2 math font that this package loads weighs in at 740kb!
2Including amsmath, mathtools, and, with XeLaTeX or LuaLaTeX, unicode-math.
config

Enables document metadata like the assignment’s due date, name/number, instructor, and course through the `\bpsset` command, which supports `\maketitle`, page headers, and so on.

2.1.1 Class options or keyval options?

There’s trade-offs to be made either way; class options greatly simplify the code (we don’t have to worry about loading packages and defining commands in more than one place, for the most part), but are much less flexible and difficult to interface with when the package loading is hidden. At the moment, package/class options provide commands and keyval options define document-configuration data (like names, due dates, and the like; see section 2.2 for more information).

2.2 Configuring `brandeis-problemset` after loading

`\bpsset{⟨options⟩}`

Sets global `brandeis-problemset` options. Mnemonic: Brandeis problem set setup (this should feel familiar to users of the `listings` package).

NOTE `\bpsset` was renamed from `\problemsetsetup` in version 0.5.0. The `\problemsetsetup` command is deprecated and will be removed in a future release.

`course=⟨course name⟩`
Course name in full.

`coursenumber=⟨course number⟩`
Course name shorthand; use 21a for “COSI 21a”.

`assignment=⟨assignment name⟩`
Assignment name in full.

`number=⟨problem set number⟩`
Assignment name shorthand; use 3 for “Problem Set 3”.

`duedate=⟨due date⟩`
Due date, e.g. 2018-10-18; not parsed at all, but ISO 8601 dates are highly recommended.

`instructor=⟨course instructor⟩`
Course instructor. With the `antonella` class-option, this is automatically set to Dr.~Antonella DiLillio.

`author=⟨your name⟩`
Alternate interface for the `\author` command.

`date=⟨document date⟩`
Alternate interface for the `\date` command.
\textbf{codefont} = \langle \text{fontspec font name} \rangle

With Xe\TeX or Lua\TeX, pass the given font to \texttt{\setmonofont} and enable Unicode shortcuts for the pseudocode environment. (If you need to specify options to \texttt{\setmonofont}, use \texttt{\setcodefont}.)

\begin{verbatim}
\setcodefont[\langle \text{fontspec options} \rangle]{\langle \text{fontspec font name} \rangle}
\end{verbatim}

Sets the monospaced font to \langle \text{fontspec font name} \rangle and uses it for shortcuts in the pseudocode environment.

\section*{2.3 Practical usage}

You may find it useful to define a customized document class for each course. There’s no reason to install these to some system-wide directory; it makes sense for them to live in the same directory as the problem set source files. For instance, \texttt{cosi21a.cls} might read:

\begin{verbatim}
\LoadClass[antonella, pseudocode]{brandeis-problemset}
% pass all unknown options to brandeis-problemset
\DeclareOption*{\PassOptionsToClass}{\CurrentOption}{brandeis-problemset}
\ProcessOptions\relax
%
% set course/author data
\bpsset{
 coursenum=21a,
 author=Rebecca Turner,
}
%
% get a prettier code font -- these can be pretty big so they’re not % loaded by default
\setcodefont[
 Extension = .otf,
 UprightFont = *-Regular,
 BoldFont = *-Bold,
]{FiraMono}

and then \texttt{ps1.tex} might read:

\begin{verbatim}
\documentclass{cosi21a}
% stuff specific to this assignment
\bpsset{
 number=1,
 duedate=2018-10-29,
}
\begin{document}
% etc.
\end{document}
\end{verbatim}

Note that you could use e.g. \texttt{\documentclass[math]{cosi21a}} to add a specific per-document option. See section 5 for a more complete example.
3 User commands and environments

brandeis-problemset provides a number of commands for typesetting problems.

\begin{problem}[(options)] \ldots \end{problem}

Defines a problem. A problem is set 1 inch from the left margin (although this amount may be customized by modifying the \texttt{problemindent} length) and begins a new page.

\textbf{NOTE} The \texttt{problem} and \texttt{subproblem} environments are typeset using \texttt{section} and \texttt{subsection} respectively, and as such can be customized with styling packages like \texttt{titlesec}; note, however, that they ignore and hide the usual section counters.

\texttt{(options)} may include:

\texttt{title=⟨problem title⟩}
Displayed after “Problem” and the problem’s number.

\texttt{number=⟨problem number⟩}
If given, the problem-number counter will not advance. The number must be robust, because it goes inside a \texttt{section}.

\texttt{pagebreak=⟨true|false⟩}
Add a pagebreak before the problem?

\texttt{label=⟨problem label⟩}
Adds a custom label to the problem with \texttt{\label} that can be used with \texttt{\ref}. I recommend prefixing your problem labels with \texttt{p:} as in \texttt{p:big-o-proofs}.

\texttt{toc=⟨true|false⟩}
Include this problem in the table of contents?

\texttt{part=⟨part name⟩}
Indicates that this problem starts a new “part” of the assignment; actually calls \texttt{\part} under the hood.

\texttt{partlabel=⟨part label⟩}
Adds a custom label to this part in the same fashion as the \texttt{label} key.

Vertical material is allowed in a problem.

\begin{subproblem}[(options)] \ldots \end{subproblem}

Defines a subproblem. A subproblem is set 1 inch from the left margin (although this amount may be customized by modifying the \texttt{subproblemindent} length) and begins a new page. Valid \texttt{(options)} are identical to the \texttt{problem} environment’s, with the following exceptions:

\texttt{pagebreak} \hspace{1cm} \texttt{false}
False by default.

\texttt{part}
PARTLABEL

Not available in the subproblem environment.

EXAMPLE Note that although these examples are too short to display them, vertical material — including listings — is allowed in the problem and subproblem environments.

Problem 1

This is a problem in an assignment.

Some solution here...

Problem 1.1

This is a subproblem.

\begin{solution}
Some solution here
\end{solution}

Defines a solution for a problem; a solution prints in blue and is excluded from the compiled document entirely unless the solutions package option is given. In this way, the same .tex file can serve as both a postable assignment prompt and an answer key.

NOTE The style of solutions is customizable by redefining \solnsstyle; it’s defined to \color{blue} by default.

EXAMPLE The default solution style is shown below; note, however, that this document is compiled with the solution option passed to brandeis-problemset; without it, the typeset solution is entirely blank.

\begin{solution}
Some solution here
\end{solution}

\Th{\langle columnspec \rangle }{\langle headertext \rangle }

Typesets a table header in bold-face. \langle columnspec \rangle defaults to l. Useful for when a column is wrapped in a math environment; if you have a column >\textttfamily l, using \Th will not print the header in \textttfamily.

\begin{tabular}{ll}
\Th{Server} & \textsc{ip} \\
juice & 1.1.1.1 \\
dogs & 2.2.2.2 \\
\end{tabular}

\begin{pseudocode}\langle keywords \rangle \end{pseudocode}

Prints pseudocode.\(^3\)

\(^3\)Designed for COSI 21a as taught by Dr. Antonella DiLillo
Several “shortcuts,” which replace a source-code sequence like -> with a symbol like →, are shown in table 1.

These shortcuts display in \pseudocodesymbolfont (default: \ttfamily), which may be redefined if you prefer something else. The easiest way to change \pseudocodesymbolfont is with \setcodefont. If you use the antonella option with \texttt{Xe\TeX} or \texttt{Lua\TeX}, \texttt{brandeis-problemset} will load \texttt{lm-math} and display the symbols seen in table 1, which look significantly better with Courier than \textit{stix}' symbols.

The following words are treated as keywords in pseudocode, and will be bolded as appropriate: Input, Output, Complexity, while, do, return, for, to, if, then, else, True, False, None, and, or, nil, and len.

Table 1: Shortcuts provided by the pseudocode environment

<table>
<thead>
<tr>
<th>Input</th>
<th>Command</th>
<th>Display</th>
<th>Codepoint</th>
</tr>
</thead>
<tbody>
<tr>
<td><-</td>
<td>\pseudocodeleftarrow</td>
<td>←</td>
<td>U+2190</td>
</tr>
<tr>
<td>-></td>
<td>\pseudocoderightarrow</td>
<td>→</td>
<td>U+2192</td>
</tr>
<tr>
<td>(/)</td>
<td>\pseudocodeemptyset</td>
<td>\∅</td>
<td>U+2205</td>
</tr>
<tr>
<td>inf</td>
<td>\pseudocodeinfty</td>
<td>∞</td>
<td>U+221E</td>
</tr>
<tr>
<td>!=</td>
<td>\pseudocodene</td>
<td>≠</td>
<td>U+2260</td>
</tr>
<tr>
<td>>=</td>
<td>\pseudocodege</td>
<td>≥</td>
<td>U+2265</td>
</tr>
<tr>
<td><=</td>
<td>\pseudocodele</td>
<td>≤</td>
<td>U+2264</td>
</tr>
</tbody>
</table>

EXAMPLE Note how the option [Bar] argument makes Bar appear bold like any other keyword in the typeset listing.

\begin{pseudocode}[Bar]
\Bar(a, n)
Input: two integers, a and n
Output: a^n
k ← n # k is a counter
b ← ∞
c ← a
while k ≥ 0 do
 if k mod 2 = 0 then
 k ← k / 2
 c ← c * c
 else
 k ← k - 1
 b ← b * c
return b
\end{pseudocode}

\begin{assembly}\[\texttt{listings options}]\ldots\end{assembly}

Typesets assembly code.\footnote{Designed for \texttt{cosi 131a} as taught by Dr. Liuba Shrira} Several considerations are taken into account; most notably, line numbers are printed as x + n, where n starts at 0 and counts by 4; the line number actually indicates the instruction’s location in memory as an offset from the program start. Additionally, all valid instructions are treated as keywords and styled appropriately.

\texttt{\texttt{listings options}} is passed directly to the \texttt{listings} package.
\begin{assembly}
LOAD R4, $200 ; sum addr
LOAD R1, =0 ; sum
LOAD R2, =0 ; i
LOAD R3, =0 ; j
BR OUTER ; we know i < 10
INNER:
ADD R1, R3 ; sum += j
INC R3 ; j++
OUTER:
BLT R3, R2, INNER ; while j < i goto inner
INC R2 ; i++
LOAD R3, =0 ; j = 0
BLT R2, =10, OUTER ; while i < 10 goto outer
STORE R1, @R4 ; store sum
HALT
\end{assembly}

\begin{java}
⟨listings options⟩...
\end{java}

Tragically-common shorthand environment for a listing of Java code.
⟨listings options⟩ is passed directly to the listings package.

\begin{scheme}
⟨listings options⟩...
\end{scheme}

Shorthand environment for a listing of Scheme code, useful for COSI 121b. Requires
the scheme package option to be loaded.
⟨listings options⟩ is passed directly to the listings package.

\begin{ganttschedule}
⟨total cell count⟩...
\end{ganttschedule}

An environment for drawing Gantt charts indicating process scheduling. The
mandatory argument indicates how small the grid should be; 19 subdivides the line into
19 cells.

To use the ganttschedule environment, make sure to use the gantt package option.
Within a ganttschedule, use the \burst command to indicate an active process
(i.e. a process burst).

\textbf{NOTE} The charts ganttschedule draws aren’t actually really proper Gantt charts, which
can indicate parallel activities; however, that’s what Liuba calls them, so that’s what
they’re called here.

\pid{⟨pid⟩}{⟨burst length⟩}

Draw a burst for process ⟨pid⟩ of time length ⟨burst length⟩.

\textbf{NOTE} The Gantt chart packages (notably \texttt{tikz}) don’t play nicely with \texttt{ltxguidex}, the
package this documentation is written in; for a typeset example, see section 5.
NOTE Because gantt schedule relies on tikz, fp, and calc, it can add significantly to document compile times. If you intend to use the gantt schedule environment, make sure to use the gantt class option or set gantt in \bpsset. If you fail to include the gantt option, you will see an error message:

\begin{verbatim}
! Package brandeis-problemset Error: ganttschedule environment not loaded in preamble.
See the brandeis-problemset package documentation for explanation.
\end{verbatim}

3.1 General formatting commands

\begin{verbatim}
\newacronym{⟨command⟩}{⟨acronym text⟩}
\newacronyms{⟨acronym list⟩}
\end{verbatim}

Creates a new acronym. If ⟨command⟩ isn’t given, the text of the macro will be used instead; \newacronym{cfg} would define a command \cfg which typesets as “CFG”. If the resulting command already exists, it will be redefined. For \newacronyms, the ⟨acronym list⟩ is a comma-delimited list of acronyms.

\begin{verbatim}
\newacronym{⟨xyz⟩}{cfg} A \⟨xyz\⟩ describes a context-free language\dots
\end{verbatim}

A CFG describes a context-free language…
The SPARC had a unique CPU…

\begin{verbatim}
\ac{⟨acronym⟩}
\end{verbatim}

Typesets an acronym. The ⟨acronym⟩ should be lowercase (e.g. \ac{cpu} rather than \ac{CPU}). Currently, \ac simply delegates to \textsc. In the future, I’d like to support a bit of letterspacing; “for abbreviations and acronyms in the midst of normal text, use spaced small caps.”\footnote{The Elements of Typographic Style by Robert Bringhurst, 2nd. ed, § 3.2.2}
An abbreviation for \textsc{textsc}.

An abbreviation for \texttt{textrm}.

An abbreviation for \texttt{textup}.

An abbreviation for \texttt{textbf}.

An abbreviation for \texttt{textit}.

An abbreviation for \texttt{texttt}.

4 A class and a package

As a user, you’ll likely only need the \texttt{brandeis-problemset} document class. However, a \texttt{package} named \texttt{brandeis-problemset} is also provided. The class styles an entire document, while the package only provides commands. This allows — for example — loading the package for the examples in this document without messing up our titles, headers, and so on.

5 Example

A brief example usage of \texttt{brandeis-problemset} follows. For a longer, more in-depth example, see \texttt{example.tex} in the \texttt{brandeis-problemset} repository.

```latex
\documentclass[gantt]{brandeis-problemset}
\author{Rebecca Turner}
\bpsset{
  coursenumber=21a,
  instructor=Dr.\ Liuba Shrira,
  duedate=2018-10-20,
  number=3,
}
\newcommand{\io}{\ac{io}}
\newcommand{\cpu}{\ac{cpu}}
\begin{document}
```
\begin{problem}
Write an assembly program!
\end{problem}

\begin{assembly}
LOAD R1, $200 ; A = (program location) + 200
LOAD R2, =1 ; i = 1
\end{assembly}

\begin{problem}
What does this algorithm do? Analyze its worst-case running time and express it using big-O notation.
\end{problem}

\begin{pseudocode}[Foo]
\begin{algorithm}
Input: two integers, a and n

Output: a^n

\begin{algorithm}
k <- 0
b <- 1
while k < n do
 k <- k + 1
 b <- b * a
\end{algorithm}
\end{algorithm}
\end{algorithm}
\end{pseudocode}

$\text{Foo}(a, n)$ computes a^n, and will run in $O(n)$ time always.

\begin{problem}[number=5.4]
Consider the following set of processes, with the length of the CPU burst given in milliseconds:
\begin{center}
\begin{tabular}{rrr}
\text{Process} & \text{Burst time} & \text{Priority} \\
P_1 & 10 & 3 \\
P_2 & 1 & 1 \\
P_3 & 2 & 3 \\
P_4 & 1 & 4 \\
P_5 & 5 & 2 \\
\end{tabular}
\end{center}
\end{problem}

\begin{center}
\begin{tabu} to 0.25\linewidth
\Th{Process} & \Th{Burst time} & \Th{Priority} \\
P_1 & 10 & 3 \\
P_2 & 1 & 1 \\
P_3 & 2 & 3 \\
P_4 & 1 & 4 \\
P_5 & 5 & 2 \\
\end{tabular}
\end{center}

\begin{ganttchart}{19}
\pid{2}{1}
\pid{4}{1}
\end{ganttchart}
6 Changelog

Coming soon... Rebecca Turner

Added

• Support for COSI 130b, including regular expressions and context-free grammars.

0.5.5 Rebecca Turner (2019-04-10) — Reordered package loading to prevent \mathtools from breaking \overbrace and \underbrace commands.

0.5.4 Rebecca Turner (2019-04-02) — Fixed hanging indent in description-lists; the hanging indent was accidentally removed through a tweak to hang the list item markers for the itemize and enumerate lists.

0.5.3 Rebecca Turner (2019-03-30) — Commands such as \texttt won’t automatically cause errors when used in the optional arguments of the problem and subproblem environments. More complex commands may still cause issues, however.

0.5.2 Rebecca Turner (2019-03-13) — Scheme code highlighting erroneously highlighted \cbr, \cabr, etc. rather than \cdr, \cadr, etc. These keywords have been renamed.

0.5.1 Rebecca Turner (2019-03-09) — Distribution erroneously excluded \brandeis-problemset.sty.

0.5.0 Rebecca Turner (2019-03-06)

Added

• \newacronym and \newacronyms commands.
• Added toc option to the problem and subproblem environments.

Changed

• Cleaned up internals; improved option system, split \brandeis-problemset into a class and a package, renamed commands and lengths to use the bps@ prefix more consistently.

• \brandeis-problemset now has a modular and much more conservative approach; far fewer packages are loaded and features are loaded only upon request to a much greater extent.

• subproblem is now an environment, not a command, with an interface matching the problem environment.

• The assembly and pseudocode options now define languages for the listings package, rather than just providing environments to use the languages.

Removed
• The following commands have been removed in favor of the \bpsset command, which encompasses their functionality entirely: \duedate{(date)}, \instructor{(name)}, \course{(name)}, \coursenumber{(number)}, \assignment{(name)}, and \problemsetnumber{(number)}.

• Removed dependencies: environ and titlesec. No longer unconditionally loaded: hyperref, xcolor, comment, listings, multirow, booktabs, longtable, tabu.

Deprecated
• The \problemsetsetup command, which has been renamed \bpsset.

0.4.4 Rebecca Turner (2019-02-14)

Changed
• Changed Times body copy font from tex-gyre’s Termes to the newer stix2-otf (for Xe\LaTeX or Lua\LaTeX) and stix2-type1 (for other \TeX engines) — the STIX2 fonts are somewhat unique amongst Times-likes in that they contain small caps.
• Redefined \Re to print in blackboard-bold.

0.4.3 Rebecca Turner (2019-01-20) — Fixed typos in license file, fixed distributed documentation .pdf.

0.4.2 Rebecca Turner (2019-01-19)

Added
• author and date keys added to \problemsetsetup to simplify class-wide configuration.

Fixed
• Fixed definitions for \duedate, \instructor, etc. to avoid spurious errors due to undefined commands.

Changed
• Translated documentation to the new \ltxguidex document class for added beauty.
• Re-licensed brandeis-problemset to the LPPL v1.3c for easy transfer of maintenence in the future.

0.4.1 Rebecca Turner (2019-01-03) — Updated scheme environment to properly recognize all primitive functions, added syntax coloring to all code.

0.4.0 Rebecca Turner (2018-12-20)

Added
• solution environment and solutions class option.
• scheme shorthand environment and scheme class option.

Fixed
• Boolean class options being overwritten by keys defined for \problemsetsetup.
• Title-formatting errors
Removed

- Assignment- and course-specific class options `duedate`, `assignment`, `instructor`, and `course`. These settings should be configured with either `\problemsetsetup` or their specific commands (`duedate`, `instructor`, etc.).

0.3.0 Rebecca Turner (2018-10-24)

Added

- This changelog.
- Support for `\parts` and referencing problems.
- Options to `\problem` environment: `part`, `label`, and `partlabel`.
- `\maketitle` (contrast with `\maketitlepage`).

0.2.0 Rebecca Turner (2018-10-20)

Changed

- Class renamed to from `problemset` to `brandeis-problemset`.

Added

- A license header.
- `\ganttschedule` environment.
- Additional keywords for `\pseudocode` environment: `and`, `or`, `nil`, and `len`.
- `\ac` command for acronyms.
- An example document.

0.1.0 Rebecca Turner (2018-10-19) — Initial beta as `problemset`.