%% %% The LaTeX Companion, 2ed (second printing August 2004) %% %% Example 8-8-10 on page 513. %% %% Copyright (C) 2004 Frank Mittelbach, Michel Goossens, %% Johannes Braams, David Carlisle, and Chris Rowley %% %% It may be distributed and/or modified under the conditions %% of the LaTeX Project Public License, either version 1.3 %% of this license or (at your option) any later version. %% %% See http://www.latex-project.org/lppl.txt for details. %% \documentclass{ttctexa} \pagestyle{empty} \setcounter{page}{6} \setlength\textwidth{351.0pt} \setlength\textheight{.44\textheight} \StartShownPreambleCommands \renewcommand\rmdefault{cmr} % since examples are normally in Times % Roman in the book \usepackage{amsmath,amssymb} \newcommand\ibinom[2]{\genfrac\lbrace\rbrace{0pt}{}{#1}{#2}} \usepackage{bm} \StopShownPreambleCommands \begin{document} \section{Sample page of mathematical typesetting} First some large operators both in text: $$\iiint\limits_{\mathcal{Q}} f(x,y,z)\,dx\,dy\,dz$$ and $$\prod_{\gamma\in\Gamma_{\widetilde{C}}} \partial(\widetilde{X}_\gamma)$$; and also on display: $$\begin{split} %% This line is deliberately long so as to show %% differences in widths; it is a little over the measure %% in article/cmr. \iiiint\limits_{\mathbf{Q}} f(w,x,y,z)\,dw\,dx\,dy\,dz &\leq \oint_{\bm{\partial Q}} f' \left( \max \left\lbrace \frac{\lVert w \rVert}{\lvert w^2 + x^2 \rvert} ; \frac{\lVert z \rVert}{\lvert y^2 + z^2 \rvert} ; \frac{\lVert w \oplus z \rVert}{\lVert x \oplus y \rVert} \right\rbrace\right) \\ &\precapprox \biguplus_{\mathbb{Q} \Subset \bar{\mathbf{Q}}} \left[ f^{\ast} \left( \frac{\left\lmoustache\mathbb{Q}(t)\right\rmoustache} {\sqrt {1 - t^2}} \right)\right]_{t=\alpha}^{t=\vartheta} \end{split}$$ For $x$ in the open interval $$\left] -1, 1 \right[$$ the infinite sum in Equation~\eqref{eq:binom1} is convergent; however, this does not hold throughout the closed interval $$\left[ -1, 1 \right]$$. \begin{align} (1 - x)^{-k} &= 1 + \sum_{j=1}^{\infty} (-1)^j \ibinom{k}{j} x^j \text{\quad for $k \in \mathbb{N}$; $k \neq 0$.} \label{eq:binom1} \end{align} \end{document}