// example file for roundedpath() in roundedpath.asy // written by stefan knorr // import needed packages import roundedpath; // function definition picture CreateKOOS(real Scale, string legend) // draw labeled coordinate system as picture { picture ReturnPic; real S = 1.2*Scale; draw(ReturnPic, ((-S,0)--(S,0)), bar = EndArrow); // x axis draw(ReturnPic, ((0,-S)--(0,S)), bar = EndArrow); // y axis label(ReturnPic, "$\varepsilon$", (S,0), SW); // x axis label label(ReturnPic, "$\sigma$", (0,S), SW); // y axis label label(ReturnPic, legend, (0.7S, -S), NW); // add label 'legend' return ReturnPic; // return picture } // some global definitions real S = 13mm; // universal scale factor for the whole file real grad = 0.25; // gradient for lines real radius = 0.04; // radius for the rounded path' real lw = 2; // linewidth pair A = (-1, -1); // start point for graphs pair E = ( 1, 1); // end point for graphs path graph; // local graph pen ActPen; // actual pen for each drawing picture T[]; // vector of all four diagrams real inc = 2.8; // increment-offset for combining pictures //////////////////////////////////////// 1st diagram T[1] = CreateKOOS(S, "$T_1$"); // initialise T[1] as empty diagram with label $T_1$ graph = A; // # pointwise definition of current path 'graph' graph = graph -- (A.x + grad*1.6, A.y + 1.6); // # graph = graph -- (E.x - grad*0.4, E.y - 0.4); // # graph = graph -- E; // # graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy ActPen = rgb(0,0,0.6) + linewidth(lw); // define pen for drawing in 1st diagram draw(T[1], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[1]' (1st hysteresis branch) draw(T[1], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (2nd hysteresis branch) graph = (0,0) -- (grad*0.6, 0.6) -- ( (grad*0.6, 0.6) + (0.1, 0) ); // define branch from origin to hysteresis graph = roundedpath(graph, radius, S); // round this path draw(T[1], graph, ActPen); // draw this path into 'T[1]' //////////////////////////////////////// 2nd diagram T[2] = CreateKOOS(S, "$T_2$"); // initialise T[2] as empty diagram with label $T_2$ graph = A; // # pointwise definition of current path 'graph' graph = graph -- (A.x + grad*1.3, A.y + 1.3); // # graph = graph -- (E.x - grad*0.7 , E.y - 0.7); // # graph = graph -- E; // # graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy ActPen = rgb(0.2,0,0.4) + linewidth(lw); // define pen for drawing in 2nd diagram draw(T[2], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[2]' (1st hysteresis branch) draw(T[2], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (2nd hysteresis branch) graph = (0,0) -- (grad*0.3, 0.3) -- ( (grad*0.3, 0.3) + (0.1, 0) ); // define branch from origin to hysteresis graph = roundedpath(graph, radius, S); // round this path draw(T[2], graph, ActPen); // draw this path into 'T[2]' //////////////////////////////////////// 3rd diagram T[3] = CreateKOOS(S, "$T_3$"); // initialise T[3] as empty diagram with label $T_3$ graph = A; // # pointwise definition of current path 'graph' graph = graph -- (A.x + grad*0.7, A.y + 0.7); // # graph = graph -- ( - grad*0.3 , - 0.3); // # graph = graph -- (0,0); // # graph = graph -- (grad*0.6, 0.6); // # graph = graph -- (E.x - grad*0.4, E.y - 0.4); // # graph = graph -- E; // # graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy ActPen = rgb(0.6,0,0.2) + linewidth(lw); // define pen for drawing in 3rd diagram draw(T[3], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[3]' (1st hysteresis branch) draw(T[3], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (2nd hysteresis branch) //////////////////////////////////////// 4th diagram T[4] = CreateKOOS(S, "$T_4$"); // initialise T[4] as empty diagram with label $T_4$ graph = A; // # pointwise definition of current path 'graph' graph = graph -- (A.x + grad*0.4, A.y + 0.4); // # graph = graph -- ( - grad*0.6 , - 0.6); // # graph = graph -- (0,0); // # graph = graph -- (grad*0.9, 0.9); // # graph = graph -- (E.x - grad*0.1, E.y - 0.1); // # graph = graph -- E; // # graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy ActPen = rgb(0.6,0,0) + linewidth(lw); // define pen for drawing in 4th diagram draw(T[4], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[4]' (1st hysteresis branch) draw(T[4], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (3nd hysteresis branch) // add some labels and black dots to the first two pictures pair SWW = (-0.8, -0.6); label(T[1], "$\sigma_f$", (0, 0.6S), NE); // sigma_f draw(T[1], (0, 0.6S), linewidth(3) + black); label(T[2], "$\sigma_f$", (0, 0.3S), NE); // sigma_f draw(T[2], (0, 0.3S), linewidth(3) + black); label(T[1], "$\varepsilon_p$", (0.7S, 0), SWW); // epsilon_p draw(T[1], (0.75S, 0), linewidth(3) + black); label(T[2], "$\varepsilon_p$", (0.7S, 0), SWW); // epsilon_p draw(T[2], (0.75S, 0), linewidth(3) + black); // add all pictures T[1...4] to the current one add(T[1],(0,0)); add(T[2],(1*inc*S,0)); add(T[3],(2*inc*S,0)); add(T[4],(3*inc*S,0)); // draw line of constant \sigma and all intersection points with the graphs in T[1...4] ActPen = linewidth(1) + dashed + gray(0.5); // pen definition draw((-S, 0.45*S)--((3*inc+1)*S, 0.45*S), ActPen); // draw backgoundline label("$\sigma_s$", (-S, 0.45S), W); // label 'sigma_s' path mark = scale(2)*unitcircle; // define mark-symbol to be used for intersections ActPen = linewidth(1) + gray(0.5); // define pen for intersection mark draw(shift(( 1 - grad*0.55 + 0*inc)*S, 0.45*S)*mark, ActPen); // # draw all intersections draw(shift((-1 + grad*1.45 + 0*inc)*S, 0.45*S)*mark, ActPen); // # draw(shift(( 1 - grad*0.55 + 1*inc)*S, 0.45*S)*mark, ActPen); // # draw(shift(( 1 - grad*0.55 + 2*inc)*S, 0.45*S)*mark, ActPen); // # draw(shift(( grad*0.45 + 2*inc)*S, 0.45*S)*mark, ActPen); // # draw(shift(( grad*0.45 + 3*inc)*S, 0.45*S)*mark, ActPen); // #