/* Copyright (C) 2001-2019 Peter Selinger. This file is part of Potrace. It is free software and it is covered by the GNU General Public License. See the file COPYING for details. */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #ifdef HAVE_INTTYPES_H #include #endif #include "potracelib.h" #include "curve.h" #include "lists.h" #include "bitmap.h" #include "decompose.h" #include "progress.h" /* ---------------------------------------------------------------------- */ /* deterministically and efficiently hash (x,y) into a pseudo-random bit */ static inline int detrand(int x, int y) { unsigned int z; static const unsigned char t[256] = { /* non-linear sequence: constant term of inverse in GF(8), mod x^8+x^4+x^3+x+1 */ 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, }; /* 0x04b3e375 and 0x05a8ef93 are chosen to contain every possible 5-bit sequence */ z = ((0x04b3e375 * x) ^ y) * 0x05a8ef93; z = t[z & 0xff] ^ t[(z>>8) & 0xff] ^ t[(z>>16) & 0xff] ^ t[(z>>24) & 0xff]; return z; } /* ---------------------------------------------------------------------- */ /* auxiliary bitmap manipulations */ /* set the excess padding to 0 */ static void bm_clearexcess(potrace_bitmap_t *bm) { potrace_word mask; int y; if (bm->w % BM_WORDBITS != 0) { mask = BM_ALLBITS << (BM_WORDBITS - (bm->w % BM_WORDBITS)); for (y=0; yh; y++) { *bm_index(bm, bm->w, y) &= mask; } } } struct bbox_s { int x0, x1, y0, y1; /* bounding box */ }; typedef struct bbox_s bbox_t; /* clear the bm, assuming the bounding box is set correctly (faster than clearing the whole bitmap) */ static void clear_bm_with_bbox(potrace_bitmap_t *bm, bbox_t *bbox) { int imin = (bbox->x0 / BM_WORDBITS); int imax = ((bbox->x1 + BM_WORDBITS-1) / BM_WORDBITS); int i, y; for (y=bbox->y0; yy1; y++) { for (i=imin; i0) { return 1; } else if (ct<0) { return 0; } } return 0; } /* ---------------------------------------------------------------------- */ /* decompose image into paths */ /* efficiently invert bits [x,infty) and [xa,infty) in line y. Here xa must be a multiple of BM_WORDBITS. */ static void xor_to_ref(potrace_bitmap_t *bm, int x, int y, int xa) { int xhi = x & -BM_WORDBITS; int xlo = x & (BM_WORDBITS-1); /* = x % BM_WORDBITS */ int i; if (xhipriv->len <= 0) { /* a path of length 0 is silly, but legal */ return; } y1 = p->priv->pt[p->priv->len-1].y; xa = p->priv->pt[0].x & -BM_WORDBITS; for (k=0; kpriv->len; k++) { x = p->priv->pt[k].x; y = p->priv->pt[k].y; if (y != y1) { /* efficiently invert the rectangle [x,xa] x [y,y1] */ xor_to_ref(bm, x, min(y,y1), xa); y1 = y; } } } /* Find the bounding box of a given path. Path is assumed to be of non-zero length. */ static void setbbox_path(bbox_t *bbox, path_t *p) { int x, y; int k; bbox->y0 = INT_MAX; bbox->y1 = 0; bbox->x0 = INT_MAX; bbox->x1 = 0; for (k=0; kpriv->len; k++) { x = p->priv->pt[k].x; y = p->priv->pt[k].y; if (x < bbox->x0) { bbox->x0 = x; } if (x > bbox->x1) { bbox->x1 = x; } if (y < bbox->y0) { bbox->y0 = y; } if (y > bbox->y1) { bbox->y1 = y; } } } /* compute a path in the given pixmap, separating black from white. Start path at the point (x0,x1), which must be an upper left corner of the path. Also compute the area enclosed by the path. Return a new path_t object, or NULL on error (note that a legitimate path cannot have length 0). Sign is required for correct interpretation of turnpolicies. */ static path_t *findpath(potrace_bitmap_t *bm, int x0, int y0, int sign, int turnpolicy) { int x, y, dirx, diry, len, size; uint64_t area; int c, d, tmp; point_t *pt, *pt1; path_t *p = NULL; x = x0; y = y0; dirx = 0; diry = -1; len = size = 0; pt = NULL; area = 0; while (1) { /* add point to path */ if (len>=size) { size += 100; size = (int)(1.3 * size); pt1 = (point_t *)realloc(pt, size * sizeof(point_t)); if (!pt1) { goto error; } pt = pt1; } pt[len].x = x; pt[len].y = y; len++; /* move to next point */ x += dirx; y += diry; area += x*diry; /* path complete? */ if (x==x0 && y==y0) { break; } /* determine next direction */ c = BM_GET(bm, x + (dirx+diry-1)/2, y + (diry-dirx-1)/2); d = BM_GET(bm, x + (dirx-diry-1)/2, y + (diry+dirx-1)/2); if (c && !d) { /* ambiguous turn */ if (turnpolicy == POTRACE_TURNPOLICY_RIGHT || (turnpolicy == POTRACE_TURNPOLICY_BLACK && sign == '+') || (turnpolicy == POTRACE_TURNPOLICY_WHITE && sign == '-') || (turnpolicy == POTRACE_TURNPOLICY_RANDOM && detrand(x,y)) || (turnpolicy == POTRACE_TURNPOLICY_MAJORITY && majority(bm, x, y)) || (turnpolicy == POTRACE_TURNPOLICY_MINORITY && !majority(bm, x, y))) { tmp = dirx; /* right turn */ dirx = diry; diry = -tmp; } else { tmp = dirx; /* left turn */ dirx = -diry; diry = tmp; } } else if (c) { /* right turn */ tmp = dirx; dirx = diry; diry = -tmp; } else if (!d) { /* left turn */ tmp = dirx; dirx = -diry; diry = tmp; } } /* while this path */ /* allocate new path object */ p = path_new(); if (!p) { goto error; } p->priv->pt = pt; p->priv->len = len; p->area = area <= INT_MAX ? area : INT_MAX; /* avoid overflow */ p->sign = sign; return p; error: free(pt); return NULL; } /* Give a tree structure to the given path list, based on "insideness" testing. I.e., path A is considered "below" path B if it is inside path B. The input pathlist is assumed to be ordered so that "outer" paths occur before "inner" paths. The tree structure is stored in the "childlist" and "sibling" components of the path_t structure. The linked list structure is also changed so that negative path components are listed immediately after their positive parent. Note: some backends may ignore the tree structure, others may use it e.g. to group path components. We assume that in the input, point 0 of each path is an "upper left" corner of the path, as returned by bm_to_pathlist. This makes it easy to find an "interior" point. The bm argument should be a bitmap of the correct size (large enough to hold all the paths), and will be used as scratch space. Return 0 on success or -1 on error with errno set. */ static void pathlist_to_tree(path_t *plist, potrace_bitmap_t *bm) { path_t *p, *p1; path_t *heap, *heap1; path_t *cur; path_t *head; path_t **plist_hook; /* for fast appending to linked list */ path_t **hook_in, **hook_out; /* for fast appending to linked list */ bbox_t bbox; bm_clear(bm, 0); /* save original "next" pointers */ list_forall(p, plist) { p->sibling = p->next; p->childlist = NULL; } heap = plist; /* the heap holds a list of lists of paths. Use "childlist" field for outer list, "next" field for inner list. Each of the sublists is to be turned into a tree. This code is messy, but it is actually fast. Each path is rendered exactly once. We use the heap to get a tail recursive algorithm: the heap holds a list of pathlists which still need to be transformed. */ while (heap) { /* unlink first sublist */ cur = heap; heap = heap->childlist; cur->childlist = NULL; /* unlink first path */ head = cur; cur = cur->next; head->next = NULL; /* render path */ xor_path(bm, head); setbbox_path(&bbox, head); /* now do insideness test for each element of cur; append it to head->childlist if it's inside head, else append it to head->next. */ hook_in=&head->childlist; hook_out=&head->next; list_forall_unlink(p, cur) { if (p->priv->pt[0].y <= bbox.y0) { list_insert_beforehook(p, hook_out); /* append the remainder of the list to hook_out */ *hook_out = cur; break; } if (BM_GET(bm, p->priv->pt[0].x, p->priv->pt[0].y-1)) { list_insert_beforehook(p, hook_in); } else { list_insert_beforehook(p, hook_out); } } /* clear bm */ clear_bm_with_bbox(bm, &bbox); /* now schedule head->childlist and head->next for further processing */ if (head->next) { head->next->childlist = heap; heap = head->next; } if (head->childlist) { head->childlist->childlist = heap; heap = head->childlist; } } /* copy sibling structure from "next" to "sibling" component */ p = plist; while (p) { p1 = p->sibling; p->sibling = p->next; p = p1; } /* reconstruct a new linked list ("next") structure from tree ("childlist", "sibling") structure. This code is slightly messy, because we use a heap to make it tail recursive: the heap contains a list of childlists which still need to be processed. */ heap = plist; if (heap) { heap->next = NULL; /* heap is a linked list of childlists */ } plist = NULL; plist_hook = &plist; while (heap) { heap1 = heap->next; for (p=heap; p; p=p->sibling) { /* p is a positive path */ /* append to linked list */ list_insert_beforehook(p, plist_hook); /* go through its children */ for (p1=p->childlist; p1; p1=p1->sibling) { /* append to linked list */ list_insert_beforehook(p1, plist_hook); /* append its childlist to heap, if non-empty */ if (p1->childlist) { list_append(path_t, heap1, p1->childlist); } } } heap = heap1; } return; } /* find the next set pixel in a row <= y. Pixels are searched first left-to-right, then top-down. In other words, (x,y)<(x',y') if y>y' or y=y' and x=0; y--) { for (x=x0; xw && x>=0; x+=(unsigned)BM_WORDBITS) { if (*bm_index(bm, x, y)) { while (!BM_GET(bm, x, y)) { x++; } /* found */ *xp = x; *yp = y; return 0; } } x0 = 0; } /* not found */ return 1; } /* Decompose the given bitmap into paths. Returns a linked list of path_t objects with the fields len, pt, area, sign filled in. Returns 0 on success with plistp set, or -1 on error with errno set. */ int bm_to_pathlist(const potrace_bitmap_t *bm, path_t **plistp, const potrace_param_t *param, progress_t *progress) { int x; int y; path_t *p; path_t *plist = NULL; /* linked list of path objects */ path_t **plist_hook = &plist; /* used to speed up appending to linked list */ potrace_bitmap_t *bm1 = NULL; int sign; bm1 = bm_dup(bm); if (!bm1) { goto error; } /* be sure the byte padding on the right is set to 0, as the fast pixel search below relies on it */ bm_clearexcess(bm1); /* iterate through components */ x = 0; y = bm1->h - 1; while (findnext(bm1, &x, &y) == 0) { /* calculate the sign by looking at the original */ sign = BM_GET(bm, x, y) ? '+' : '-'; /* calculate the path */ p = findpath(bm1, x, y+1, sign, param->turnpolicy); if (p==NULL) { goto error; } /* update buffered image */ xor_path(bm1, p); /* if it's a turd, eliminate it, else append it to the list */ if (p->area <= param->turdsize) { path_free(p); } else { list_insert_beforehook(p, plist_hook); } if (bm1->h > 0) { /* to be sure */ progress_update(1-y/(double)bm1->h, progress); } } pathlist_to_tree(plist, bm1); bm_free(bm1); *plistp = plist; progress_update(1.0, progress); return 0; error: bm_free(bm1); list_forall_unlink(p, plist) { path_free(p); } return -1; }