/* NOLINT(build/header_guard) */ /* Copyright 2013 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* template parameters: FN */ #define HistogramType FN(Histogram) double FN(BrotliPopulationCost)(const HistogramType* histogram) { static const double kOneSymbolHistogramCost = 12; static const double kTwoSymbolHistogramCost = 20; static const double kThreeSymbolHistogramCost = 28; static const double kFourSymbolHistogramCost = 37; const size_t data_size = FN(HistogramDataSize)(); int count = 0; size_t s[5]; double bits = 0.0; size_t i; if (histogram->total_count_ == 0) { return kOneSymbolHistogramCost; } for (i = 0; i < data_size; ++i) { if (histogram->data_[i] > 0) { s[count] = i; ++count; if (count > 4) break; } } if (count == 1) { return kOneSymbolHistogramCost; } if (count == 2) { return (kTwoSymbolHistogramCost + (double)histogram->total_count_); } if (count == 3) { const uint32_t histo0 = histogram->data_[s[0]]; const uint32_t histo1 = histogram->data_[s[1]]; const uint32_t histo2 = histogram->data_[s[2]]; const uint32_t histomax = BROTLI_MAX(uint32_t, histo0, BROTLI_MAX(uint32_t, histo1, histo2)); return (kThreeSymbolHistogramCost + 2 * (histo0 + histo1 + histo2) - histomax); } if (count == 4) { uint32_t histo[4]; uint32_t h23; uint32_t histomax; for (i = 0; i < 4; ++i) { histo[i] = histogram->data_[s[i]]; } /* Sort */ for (i = 0; i < 4; ++i) { size_t j; for (j = i + 1; j < 4; ++j) { if (histo[j] > histo[i]) { BROTLI_SWAP(uint32_t, histo, j, i); } } } h23 = histo[2] + histo[3]; histomax = BROTLI_MAX(uint32_t, h23, histo[0]); return (kFourSymbolHistogramCost + 3 * h23 + 2 * (histo[0] + histo[1]) - histomax); } { /* In this loop we compute the entropy of the histogram and simultaneously build a simplified histogram of the code length codes where we use the zero repeat code 17, but we don't use the non-zero repeat code 16. */ size_t max_depth = 1; uint32_t depth_histo[BROTLI_CODE_LENGTH_CODES] = { 0 }; const double log2total = FastLog2(histogram->total_count_); for (i = 0; i < data_size;) { if (histogram->data_[i] > 0) { /* Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) = = log2(total_count) - log2(count(symbol)) */ double log2p = log2total - FastLog2(histogram->data_[i]); /* Approximate the bit depth by round(-log2(P(symbol))) */ size_t depth = (size_t)(log2p + 0.5); bits += histogram->data_[i] * log2p; if (depth > 15) { depth = 15; } if (depth > max_depth) { max_depth = depth; } ++depth_histo[depth]; ++i; } else { /* Compute the run length of zeros and add the appropriate number of 0 and 17 code length codes to the code length code histogram. */ uint32_t reps = 1; size_t k; for (k = i + 1; k < data_size && histogram->data_[k] == 0; ++k) { ++reps; } i += reps; if (i == data_size) { /* Don't add any cost for the last zero run, since these are encoded only implicitly. */ break; } if (reps < 3) { depth_histo[0] += reps; } else { reps -= 2; while (reps > 0) { ++depth_histo[BROTLI_REPEAT_ZERO_CODE_LENGTH]; /* Add the 3 extra bits for the 17 code length code. */ bits += 3; reps >>= 3; } } } } /* Add the estimated encoding cost of the code length code histogram. */ bits += (double)(18 + 2 * max_depth); /* Add the entropy of the code length code histogram. */ bits += BitsEntropy(depth_histo, BROTLI_CODE_LENGTH_CODES); } return bits; } #undef HistogramType